Skip to main content

Ascorbic Acid and Alpha-Tocopherol Contribute to the Therapy of Polycystic Ovarian Syndrome in Mouse Models

Abstract

Polycystic ovary syndrome (PCOS) affects up to 10% of women within reproductive ages and has been a cause of infertility and poor quality of life. Alteration in the oxidant-antioxidant profile occurs in PCOS. This study, therefore, investigates the contribution of ascorbic acid (AA) and alpha-tocopherol(ATE) on different PCOS parameters. The mifepristone and letrozole models were used, and young mature female mice were randomly assigned to groups of six per group. On PCOS induction with either mifepristone or letrozole, mice were administered AA and ATE at doses ranging from 10–1000mg/kg to 0.1–1000 mg/kg in the respective models. Vaginal cytology, body weights, and temperature, as well as blood glucose, testosterone, and insulin levels, were measured. Total antioxidant capacity and malondialdehyde levels were analyzed. Determination of gene expression of some reactive oxygen species and histomorphological analysis on the ovaries and uteri were performed. At the end of the experiments, AA and ATE restored reproductive cycling, with AA being more effective. AA and ATE increased fasting blood glucose but had no significant effect on serum insulin levels. AA decreased testosterone levels, but ATE caused slight increases. AA and ATE both increased total antioxidant capacity and decreased malondialdehyde levels. AA and ATE also slightly upregulated the mRNA expressions of catalase, superoxide dismutase, and heme oxygenase 1 mainly. AA and ATE also decreased ovarian weight and mostly resolved cysts in the ovaries and congestion in the uterus. This study has shown that AA and ATE are beneficial in the therapy of PCOS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Asunción M, Calvo RM, San Millán JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab. 2000;85:2434–8.

    PubMed  Google Scholar 

  2. 2.

    Knochenhauer ES, Key TJ, Kahsar-Miller M, et al. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.

    CAS  PubMed  Google Scholar 

  3. 3.

    Lee JY, Baw C-K, Gupta S, et al. Role of oxidative stress in polycystic ovary syndrome. Curr Womens Health Rev. 2010;6:96–107.

    CAS  Google Scholar 

  4. 4.

    Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352:1223–36.

    CAS  PubMed  Google Scholar 

  5. 5.

    Pasquali R, Gambineri A. Polycystic ovary syndrome: a multifaceted disease from adolescence to adult age. In: An N Y Acad Sci. 2006, pp. 158–174.

  6. 6.

    Birdsall MA, Farquhar CM, White HD. Association between polycystic ovaries and extent of coronary artery disease in women having cardiac catheterization. Ann Intern Med. 1997;126:32–5.

    CAS  PubMed  Google Scholar 

  7. 7.

    Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary Syndrome1. Biol Reprod. 2012;86:2–7.

    Google Scholar 

  8. 8.

    Badawy A, Elnashar A. Treatment options for polycystic ovary syndrome. Int J Women's Health. 2011;3:25–35.

    Google Scholar 

  9. 9.

    Choi SH, Shapiro H, Robinson GE, Irvine J, Neuman J, Rosen B, et al. Psychological side-effects of clomiphene citrate and human menopausal gonadotrophin. J Psychosom Obstet Gynecol. 2005;26:93–100.

    CAS  Google Scholar 

  10. 10.

    Verit FF, Erel O. Oxidative stress in nonobese women with polycystic ovary syndrome: correlations with endocrine and screening parameters. Gynecol Obstet Investig. 2008;65:233–9.

    CAS  Google Scholar 

  11. 11.

    Kucukkurt I, Ince S, Fidan AF, et al. The effects of dietary supplementation of different amount of Yucca schidigera powder (Sarsaponin 30??) on blood and tissue antioxidant defense systems and lipid peroxidation in rats. J Anim Vet Adv. 2008;7:1413–7.

    Google Scholar 

  12. 12.

    Keles H, Ince S, Küçükkurt I, Tatli II, Akkol EK, Kahraman C, et al. The effects of Feijoa sellowiana fruits on the antioxidant defense system, lipid peroxidation, and tissue morphology in rats. Pharm Biol. 2012;50:318–25.

    PubMed  Google Scholar 

  13. 13.

    Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, et al. Activity of LPO processes in women with polycystic ovarian syndrome and infertility. Bull Exp Biol Med. 2017;162:320–2.

    CAS  PubMed  Google Scholar 

  14. 14.

    Troisi J, Cinque C, Giugliano L, et al. Metabolomic change due to combined treatment with myo-inositol, D-chiro-inositol and glucomannan in polycystic ovarian syndrome patients: a pilot study. J Ovarian Res. 2019;12:25.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Szczuko M, Hawryłkowicz V, Kikut J, Drozd A. The implications of vitamin content in the plasma in reference to the parameters of carbohydrate metabolism and hormone and lipid profiles in PCOS. J Steroid Biochem Mol Biol. 2020;198:105570.

    CAS  PubMed  Google Scholar 

  16. 16.

    Umegaki K, Daohua P, Sugisawa A, Kimura M, Higuchi M. Influence of one bout of vigorous exercise on ascorbic acid in plasma and oxidative damage to DNA in blood cells and muscle in untrained rats. J Nutr Biochem. 2000;11:401–7.

    CAS  PubMed  Google Scholar 

  17. 17.

    Peters EM, Anderson R, Nieman DC, Fickl H, Jogessar V. Vitamin C supplementation attenuates the increases in circulating cortisol, adrenaline and anti-inflammatory polypeptides following ultramarathon running. Int J Sports Med. 2001;22:537–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    Sudha S, Valli G, Mary Julie P, et al. Influence of streptozotocin-induced diabetes and insulin treatment on the pituitary-testicular axis during sexual maturation in rats. Exp Clin Endocrinol Diabetes. 2000;108:14–20.

    CAS  PubMed  Google Scholar 

  19. 19.

    Demirel MA, Ilhan M, Suntar I, Keles H, Kupeli Akkol E. Activity of Corylus avellana seed oil in letrozole-induced polycystic ovary syndrome model in rats. Rev Bras Farmacogn. 2016;26:83–8.

    CAS  Google Scholar 

  20. 20.

    NIH. Public health service policy on humane care and use of laboratory animals. 2015. http://grants.nih.gov/grants/olaw/references/PHSPolicyLabAnimals.pdf.

  21. 21.

    National Research Council. Guide for the care and use of laboratory animals. In: Guide for the Care and Use of Laboratory Animals. Eighth ed. Washington D.C.: National Academies Press; 2010. p. 118.

    Google Scholar 

  22. 22.

    Bafor EE, Onwukpa I, Itemire AO, Omoruyi O, Eferoba-Idio E, Odega K, et al. Amelioration of Escherichia coli-induced endometritis with ascorbic acid in non-pregnant mouse models. Am J Reprod Immunol. 2018;80:e12976.

    PubMed  Google Scholar 

  23. 23.

    Sanchez-Criado JE, Sanchez A, Ruiz A, et al. Endocrine and morphological features of cystic ovarian condition in antiprogesterone RU486-treated rats. Acta Endocrinol. 1993;129:237–45.

    CAS  Google Scholar 

  24. 24.

    Reddy PS, Begum N, Mutha S, Bakshi V. Beneficial effect of Curcumin in Letrozole induced polycystic ovary syndrome. Asian Pac J Reprod. 2016;5:116–22.

    Google Scholar 

  25. 25.

    Bafor EE, Ukpebor F, Elvis-offiah U, et al. Justicia flava leaves exert mild estrogenic activity in mouse models of uterotrophic and reproductive cycle investigations. J Med Food. 2020;23:395–408.

    CAS  PubMed  Google Scholar 

  26. 26.

    McLean AC, Valenzuela N, Fai S, et al. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. 2012;67:4389.

    Google Scholar 

  27. 27.

    Ghowsi M, Khazali H, Sisakhtnezhad S. The effect of resveratrol on oxidative stress in the liver and serum of a rat model of polycystic ovary syndrome: an experimental study. Int J Reprod Biomed (Yadz). 2018;16:149–58.

    CAS  Google Scholar 

  28. 28.

    Baranova A, Tran TP, Birerdinc A, Younossi ZM. Systematic review: association of polycystic ovary syndrome with metabolic syndrome and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2011;33:801–14.

    CAS  PubMed  Google Scholar 

  29. 29.

    Han ES, Muller FL, Pérez VI, Qi W, Liang H, Xi L, et al. The in vivo gene expression signature of oxidative stress. Physiol Genomics. 2008;34:112–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2012;21:143–52.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ruegg M a, Meinen S. Histopathology in Hematoxylin & Eosin stained muscle sections. TREAT-NMD Neuromuscul Netw 2012; 1–9.

  32. 32.

    Bradbury S. Peacock’s Elementary Microtechniques. 4th Ed: London: Arnold, 1974.

  33. 33.

    Osuka S, Nakanishi N, Murase T, Nakamura T, Goto M, Iwase A, et al. Animal models of polycystic ovary syndrome: a review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reprod Med Biol. 2019;18:151–60.

    PubMed  Google Scholar 

  34. 34.

    Maliqueo M, Sun M, Johansson J, Benrick A, Labrie F, Svensson H, et al. Continuous administration of a P450 aromatase inhibitor induces polycystic ovary syndrome with a metabolic and endocrine phenotype in female rats at adult age. Endocrinology. 2013;154:434–45.

    CAS  PubMed  Google Scholar 

  35. 35.

    Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol. 2018;16:1–13.

    Google Scholar 

  36. 36.

    Wessel L, Balakrishnan-Renuka A, Henkel C, Meyer HE, Meller K, Brand-Saberi B, et al. Long-term incubation with mifepristone (MLTI) increases the spine density in developing Purkinje cells: new insights into progesterone receptor mechanisms. Cell Mol Life Sci. 2014;71:1723–40.

    CAS  PubMed  Google Scholar 

  37. 37.

    Gao Y, Short RV. Fertility control in laboratory rats and mice after feeding with the antigestagen RU486. J Reprod Fertil. 1994;101:477–81.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ortega I, Sokalska A, Villanueva JA, Cress AB, Wong DH, Stener-Victorin E, et al. Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary. Fertil Steril. 2013;99:889–96.

    CAS  PubMed  Google Scholar 

  39. 39.

    Li J, Kim SJ, Abejuela VA, et al. Disrupted female estrous cyclicity in the intrahippocampal kainic acid mouse model of temporal lobe epilepsy. Epilepsia Open. 2017;2:39–47.

    PubMed  Google Scholar 

  40. 40.

    Banerji TK, Parkening TA, Collins TJ, Rassoli AH, Legate LS. Acute lithium treatment suppresses the proestrous LH surge in mice: chronic lithium leads to constant diestrus. Brain Res. 1986;380:176–80.

    CAS  PubMed  Google Scholar 

  41. 41.

    Bhatnagar AS, Häusler A, Schieweck K, Lang M, Bowman R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J Steroid Biochem Mol Biol. 1990;37:1021–7.

    CAS  PubMed  Google Scholar 

  42. 42.

    Miller WR. Biology of aromatase inhibitors: pharmacology/endocrinology within the breast. Endocr Relat Cancer. 1999;6:187–95.

    CAS  PubMed  Google Scholar 

  43. 43.

    Serpek B, Baspinar N, Haliloglu S, et al. The relationship between ascorbic acid, oestradiol 17β and progesterone in plasma and in ovaries during the sexual cycle in cattle. Rev Med Vet (Toulouse). 2001;152:253–60.

    CAS  Google Scholar 

  44. 44.

    Luck MR, Zhao Y. Identification and measurement of collagen in the bovine corpus luteum and its relationship with ascorbic acid and tissue development. J Reprod Fertil. 1993;99:647–52.

    CAS  PubMed  Google Scholar 

  45. 45.

    Sebrell W, Harris R. The vitamins: chemistry, physiology, pathology and methods. New York: Academic Press; 1967.

    Google Scholar 

  46. 46.

    Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;43:334–44.

    Google Scholar 

  47. 47.

    Tilly JL, Tilly KI. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology. 1995;136:242–52.

    CAS  PubMed  Google Scholar 

  48. 48.

    Igarashi M, Nishimura T, Izawa H. Augmentative effect of ascorbic acid upon induction of human ovulation in clomiphene ineffective anovulatory women. Fertil Steril. 1977;22:168–73.

    CAS  Google Scholar 

  49. 49.

    Hódi Á, Földesi I, Ducza E, Hajagos-Tóth J, Seres AB, Klukovits A, et al. Tocopherol inhibits the relaxing effect of terbutaline in the respiratory and reproductive tracts of the rat: the role of the oxidative stress index. Life Sci. 2014;105:48–55.

    PubMed  Google Scholar 

  50. 50.

    Franks S, Adams J, Mason H, et al. Ovulatory disorders in women with polycystic ovary syndrome. Clin Obstet Gynecol. 1985;12:605–32.

    CAS  Google Scholar 

  51. 51.

    Kistner R. Induction of ovulation with clomiphene citrate (clomid). Obstet Gynecol Surv. 1965;20:873–900.

    CAS  PubMed  Google Scholar 

  52. 52.

    Badawy A, Abdel Aal I, Abulatta M. Clomiphene citrate or letrozole for ovulation induction in women with polycystic ovarian syndrome: a prospective randomized trial. Fertil Steril. 2009;92:849–52.

    CAS  PubMed  Google Scholar 

  53. 53.

    Prelević GM, Wurzburger MI, Balint-Perić L, et al. Twenty-four-hour serum growth hormone, insulin, C-peptide and blood glucose profiles and serum insulin-like growth factor-I concentrations in women with polycystic ovaries. Horm Res Paediatr. 1992;37:125–31.

    Google Scholar 

  54. 54.

    Santosh HN, David CM. Role of ascorbic acid in diabetes mellitus: a comprehensive review. J Med Radiol Pathol Surg. 2017;4:1–3.

    CAS  Google Scholar 

  55. 55.

    Eriksson J, Kohvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. Ann Nutr Metab. 1995;39:217–23.

    CAS  PubMed  Google Scholar 

  56. 56.

    Ihara Y, Yamada Y, Toyokuni S, Miyawaki K, Ban N, Adachi T, et al. Antioxidant α-tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes. FEBS Lett. 2000;473:24–6.

    CAS  PubMed  Google Scholar 

  57. 57.

    Savontaus E, Fagerholm V, Rahkonen O, Scheinin M. Reduced blood glucose levels, increased insulin levels and improved glucose tolerance in α2A-adrenoceptor knockout mice. Eur J Pharmacol. 2008;578:359–64.

    CAS  PubMed  Google Scholar 

  58. 58.

    Legro RS, Finegood D, Dunaif A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1998;83:2694–8.

    CAS  PubMed  Google Scholar 

  59. 59.

    Xu R, Zhang S, Tao A, Chen G, Zhang M. Influence of vitamin E supplementation on glycaemic control: a meta-analysis of randomised controlled trials. PLoS One. 2014;9:e95008.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kafali H, Iriadam M, Ozardali I, et al. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 2004;35:103–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7:219–31.

    CAS  PubMed  Google Scholar 

  62. 62.

    Mondul AM, Rohrmann S, Menke A, Feinleib M, Nelson WG, Platz EA, et al. Association of serum α-tocopherol with sex steroid hormones and interactions with smoking: implications for prostate cancer risk. Cancer Causes Control. 2011;22:827–36.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hartman TJ, Dorgan JF, Woodson K, Virtamo J, Tangrea JA, Heinonen OP, et al. Effects of long-term α-tocopherol supplementation on serum hormones in older men. Prostate. 2001;46:33–8.

    CAS  PubMed  Google Scholar 

  64. 64.

    Kyle ME, Miccadei S, Nakae D, Farber JL. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem Biophys Res Commun. 1987;149:889–96.

    CAS  PubMed  Google Scholar 

  65. 65.

    Montano MM, Jaiswal AK, Katzenellenbogen BS. Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-α and estrogen receptor-β. J Biol Chem. 1998;273:25443–9.

    CAS  PubMed  Google Scholar 

  66. 66.

    Morrissy S, Strom J, Purdom-Dickinson S, Chen QM. NAD(P)H: Quinone oxidoreductase 1 is induced by progesterone in cardiomyocytes. Cardiovasc Toxicol. 2012;12:108–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Mendoza CC, Calzada CA, Jiménez Z, et al. Possible Role of Nrf2 in oxidative and inflammatory processes during menopause: In: Morales-Gonzalez JA, Morales-Gonzalez A, Madrigal-Santillan EO (eds) A master regulator of oxidative stress—the transcription factor Nrf2. In Tech Open, 2016. 2016. https://doi.org/10.5772/65244.

  68. 68.

    Garg SK, Mahajan S. Effect of ascorbic acid on longevity, catalase and lipid peroxidation in Callosobruchus maculatus F. Age. 1993;16:87–92.

    CAS  Google Scholar 

  69. 69.

    Richter HE, Loewen PC. Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun. 1981;100:1039–46.

    CAS  PubMed  Google Scholar 

  70. 70.

    Dawson EB, Harris WA, Powell LC. Relationship between ascorbic acid and male fertility. World Rev Nutr Diet. 1990;62:1–26.

    CAS  PubMed  Google Scholar 

  71. 71.

    Jelodar G, Akbari A, Nazifi S. The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int J Radiat Biol. 2013;89:128–31.

    CAS  PubMed  Google Scholar 

  72. 72.

    Akbari A, Jelodar G, Nazifi S. Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by a BTS antenna model. Toxicol Mech Methods. 2014;24:347–52.

    CAS  PubMed  Google Scholar 

  73. 73.

    Dos Santos PS, Costa JP, Tomé ADR, et al. Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol. 2011;668:65–71.

    PubMed  Google Scholar 

  74. 74.

    Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92:240–5.

    CAS  PubMed  Google Scholar 

  75. 75.

    Ekhard ZE, Koo WW, Nelson SE, et al. Lack of effect of graded doses of vitamin D on bone metabolism of breastfed infants. J Clin Nutr Metab. 2017;1:105.

    Google Scholar 

  76. 76.

    Anderson N, Fergus RR, Nm C. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2001;2:78–88.

    Google Scholar 

  77. 77.

    Abdulla KA, Um CY, Gross MD, Bostick RM. Circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. J Nutr. 2018;148:1453–61.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of Uloma B. Elvis-Offiah for her assistance at the start of the research.

Availability of Data and Material

Provided on request.

Funding

This research was supported by a grant from the Society for Reproductive Investigations and Bayer Discovery/Innovation Grant 2018/2019 to Dr. Enitome E. Bafor.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enitome E. Bafor.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Ethical approval was provided by the Faculty of Pharmacy Research Ethics Committee University of Benin, Nigeria. Approval number: EC/FP/018/22.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 9829 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bafor, E.E., Uchendu, A.P., Osayande, O.E. et al. Ascorbic Acid and Alpha-Tocopherol Contribute to the Therapy of Polycystic Ovarian Syndrome in Mouse Models. Reprod. Sci. 28, 102–120 (2021). https://doi.org/10.1007/s43032-020-00273-9

Download citation

Keywords

  • Polycystic ovarian syndrome
  • Letrozole
  • Mifepristone
  • Estrus
  • Estrous