Skip to main content

Advertisement

Log in

Liposomal 2-Methoxyestradiol Nanoparticles for Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyomas represent a challenging problem with limited medical treatment options. The anti-tumor agent 2-methoxyestradiol (2-ME) shows promising results but its efficacy is limited by inadequate pharmacokinetics. We previously demonstrated that 2-ME nanoparticles can be successfully formulated and that they show improved in vitro anti-leiomyoma cell activity. Here, we examined the effects of the in vivo delivery of 2-ME nanoparticles in a patient-derived xenograft (PDX) leiomyoma mouse model. Patient-derived leiomyoma tumor tissues were xenografted subcutaneously in estrogen/progesterone pretreated immunodeficient NOG mice. Animals (n = 12) were treated with liposomal 2-ME nanoparticles by intra-peritoneal (IP) injection (50 mg/kg/dose, three times weekly) or control for 28 days. Tumor volume was measured weekly by calipers and prior to sacrifice by ultrasound. In addition, the expression of the cell proliferation marker Ki67 and the apoptosis marker cleaved caspase-3 in tumor tissues after treatment were measured by immunohistochemistry. Liposomal 2-ME treatment was associated with a significant tumor growth inhibition (30.5% less than controls as early as 2 weeks, p = 0.025). In addition, injections of liposomal 2-ME inhibited the expression of the proliferation marker Ki67 (55.8% reduction, p < 0.001). Furthermore, liposomal 2-ME treatment was associated with a 67.5% increase of cleaved caspase-3 expression of increase (p = 0.048). Our findings suggest that liposomal nanoparticle formulation can successfully deliver 2-ME and can be a promising therapeutic strategy for uterine leiomyoma. Further characterization of the liposomal-2ME, including pharmacokinetics, maximal tolerated dose, and safety, is needed in preclinical models prior to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All original data and material are available on request.

References

  1. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(4):571–88.

    Article  Google Scholar 

  2. Hoekstra AV, Sefton EC, Berry E, Lu Z, Hardt J, Marsh E, et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94(5):1768–74.

    Article  CAS  Google Scholar 

  3. Fritton K, Borahay MA. New and emerging therapies for uterine fibroids. Semin Reprod Med. 2017;35(6):549–59. https://doi.org/10.1055/s-0037-1606303.

    Article  CAS  PubMed  Google Scholar 

  4. Keshavarz HHS, Kieke BA, Marchbanks PA. Hysterectomy surveillance—United States, 1994-1999. MMWR CDC Surveill Summ. 2002;51:1–8.

    Google Scholar 

  5. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    CAS  PubMed  Google Scholar 

  6. Dobos J, Timar J, Bocsi J, Burian Z, Nagy K, Barna G, et al. In vitro and in vivo antitumor effect of 2-methoxyestradiol on human melanoma. Int J Cancer. 2004;112(5):771–6. https://doi.org/10.1002/ijc.20473.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia GE, Wisniewski HG, Lucia MS, Arevalo N, Slaga TJ, Kraft SL, et al. 2-Methoxyestradiol inhibits prostate tumor development in transgenic adenocarcinoma of mouse prostate: role of tumor necrosis factor-alpha-stimulated gene 6. Clin Cancer Res. 2006;12(3 Pt 1):980–8. https://doi.org/10.1158/1078-0432.CCR-05-2068.

    Article  CAS  PubMed  Google Scholar 

  8. Sato F, Fukuhara H, Basilion JP. Effects of hormone deprivation and 2-methoxyestradiol combination therapy on hormone-dependent prostate cancer in vivo. Neoplasia. 2005;7(9):838–46.

    Article  CAS  Google Scholar 

  9. Klauber N, Parangi S, Flynn E, Hamel E, D'Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997;57(1):81–6.

    CAS  PubMed  Google Scholar 

  10. Salama SA, Nasr AB, Dubey RK, Al-Hendy A. Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: a potential medicinal treatment for uterine fibroids. J Soc Gynecol Investig. 2006;13(8):542–50. https://doi.org/10.1016/j.jsgi.2006.09.003.

    Article  CAS  PubMed  Google Scholar 

  11. Salama SA, Kamel MW, Botting S, Salih SM, Borahay MA, Hamed AA, et al. Catechol-o-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells. PLoS One. 2009;4(10):e7356.

    Article  Google Scholar 

  12. Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor beta3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178–84. https://doi.org/10.1016/j.fertnstert.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  13. James J, Murry DJ, Treston AM, Storniolo AM, Sledge GW, Sidor C, et al. Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer. Investig New Drugs. 2007;25(1):41–8. https://doi.org/10.1007/s10637-006-9008-5.

    Article  CAS  Google Scholar 

  14. Ireson CR, Chander SK, Purohit A, Perera S, Newman SP, Parish D, et al. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer. 2004;90(4):932–7. https://doi.org/10.1038/sj.bjc.6601591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simeone L, Mangiapia G, Irace C, Di Pascale A, Colonna A, Ortona O, et al. Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery. Mol BioSyst. 2011;7(11):3075–86. https://doi.org/10.1039/c1mb05143a.

    Article  CAS  PubMed  Google Scholar 

  16. Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med. 2010;267(1):44–53. https://doi.org/10.1111/j.1365-2796.2009.02191.x.

    Article  CAS  PubMed  Google Scholar 

  17. Ozpolat B, Lopez-Berestein G, Adamson P, Fu CJ, Williams AH. Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. J Pharm Pharm Sci. 2003;6(2):292–301.

    CAS  PubMed  Google Scholar 

  18. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6. https://doi.org/10.1016/j.addr.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  19. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60. https://doi.org/10.2147/IJN.S26766.

    Article  CAS  PubMed  Google Scholar 

  20. Ali H, Kilic G, Vincent K, Motamedi M, Rytting E. Nanomedicine for uterine leiomyoma therapy. Ther Deliv. 2013;4(2):161–75. https://doi.org/10.4155/tde.12.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 2016;7(13):16619–35. https://doi.org/10.18632/oncotarget.7672.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borahay MA, Vincent K, Motamedi M, Sbrana E, Kilic GS, Al-Hendy A, et al. Novel effects of simvastatin on uterine fibroids: in vitro and patient-derived Xenograft mouse model study. Am J Obstet Gynecol. 2015;213:196.e1–8. https://doi.org/10.1016/j.ajog.2015.03.055.

    Article  CAS  Google Scholar 

  23. Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol. 2008;324:53–76.

    CAS  PubMed  Google Scholar 

  24. Du B, Li Y, Li X, Youmei A, Chen C, Zhang Z. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int J Pharm. 2010;384(1–2):140–7. https://doi.org/10.1016/j.ijpharm.2009.09.045.

    Article  CAS  PubMed  Google Scholar 

  25. Du B, Wang SY, Shi XF, Zhang CF, Zhang ZZ. The effect of 2-methoxyestradiol liposome on growth inhibition, angiogenesis and expression of VEGF and Ki67 in mice bearing H22 hepatocellular carcinoma. Tumori. 2011;97(5):660–5. https://doi.org/10.1700/989.10728.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuiji K, Takeda T, Li B, Kondo A, Ito M, Yaegashi N. Establishment of a novel xenograft model for human uterine leiomyoma in immunodeficient mice. Tohoku J Exp Med. 222(1):55–61.

  27. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433–42.

    Article  CAS  Google Scholar 

  28. Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, et al. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol. 2012;40(4):1298–304. https://doi.org/10.3892/ijo.2011.1304.

    Article  CAS  PubMed  Google Scholar 

  29. Nishitani S, Horie M, Ishizaki S, Yano H. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS One. 2013;8(11):e82346. https://doi.org/10.1371/journal.pone.0082346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li L, Da J, Landstrom M, Ulmsten U, Fu X. Antiproliferative activity and toxicity of 2-methoxyestradiol in cervical cancer xenograft mice. Int J Gynecol Cancer. 2005;15(2):301–7. https://doi.org/10.1111/j.1525-1438.2005.15220.x.

    Article  CAS  PubMed  Google Scholar 

  31. Sweeney C, Liu G, Yiannoutsos C, Kolesar J, Horvath D, Staab MJ, et al. A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin Cancer Res. 2005;11(18):6625–33. https://doi.org/10.1158/1078-0432.CCR-05-0440.

    Article  CAS  PubMed  Google Scholar 

  32. Rajkumar SV, Richardson PG, Lacy MQ, Dispenzieri A, Greipp PR, Witzig TE, et al. Novel therapy with 2-methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma. Clin Cancer Res. 2007;13(20):6162–7. https://doi.org/10.1158/1078-0432.CCR-07-0807.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by the NIH grant 1R01HD094380-01 to Mostafa A. Borahay and the Alliance for NanoHealth (ANH) grant for Gokhan S Kilic, Salama A. Salama, and Bulent Ozpolat.

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to this project and reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Mostafa A. Borahay or Bulent Ozpolat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest to.

Ethical Approval

The study was approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Texas Medical Branch at Galveston.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borahay, M.A., Vincent, K.L., Motamedi, M. et al. Liposomal 2-Methoxyestradiol Nanoparticles for Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. Reprod. Sci. 28, 271–277 (2021). https://doi.org/10.1007/s43032-020-00248-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00248-w

Keywords

Navigation