Skip to main content

Advertisement

Log in

The Lymphatic System in Endometriosis: a Pilot Study of Endometrial-Like Cells and Immune Cell Populations in Lymph Nodes Associated with Deep Infiltrating Bowel Lesions

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In endometriosis, the lymphatic and immune systems are implicated in disease establishment and progression. The objective of this pilot study was to examine endometrial-like, and for the first time, immune cell populations in lymph nodes associated with deep infiltrating endometriosis (DIE) bowel lesions. Premenopausal women undergoing excision of endometriosis and/or hysterectomy were included. DIE bowel lesion-associated (n = 10) and other pelvic (n = 15) lymph nodes were studied. Samples were immunohistochemically stained for endometrial-like cells (CD10), T cells (CD3, CD4, CD8, and FoxP3), dendritic cells (DC; DC-Lamp and DC-Sign), B cells (CD20, CD79 and plasma), macrophages (CD68), and natural killer cells (NK; CD57). Cell abundance (percentage positive area) and antigen expression (optical density; OD) were quantified. Endometrial-like cells and each immune cell population were present in all studied nodes. The DIE bowel lesion-associated nodes showed features of immune activation, with T cell proliferation (CD3+ area p = 0.007, CD4+ area p = 0.015 compared with other pelvic nodes); and a mixture of helper and regulatory T cells, B cells, DCs, macrophages, and plasma cells present in the paracortex. In DIE bowel lesion-associated compared with other pelvic nodes, CD10+ endometrial-like cells were reduced (percentage positive area p < 0.001, OD p = 0.004). This study provides new insight into lymphatic and immune system involvement in advanced endometriosis. In particular, we have shown evidence of immune activation in DIE lesion-associated nodes. This was despite lower endometrial-like cell numbers compared with other pelvic nodes. The observations contribute to a developing understanding of the local immune response to advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vinatier D, Cosson M, Dufour P. Is endometriosis an endometrial disease? Eur J Obstet Gynecol Reprod Biol. 2000;91(2):113–25.

    CAS  PubMed  Google Scholar 

  2. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–96.

    CAS  PubMed  Google Scholar 

  3. Koninckx PR, Martin D. Treatment of deeply infiltrating endometriosis. Curr Opin Obstet Gynecol. 1994;6(3):231–41.

    CAS  PubMed  Google Scholar 

  4. Rossini R, Lisi G, Pesci A, et al. Depth of intestinal wall infiltration and clinical presentation of deep infiltrating endometriosis: evaluation of 553 consecutive cases. J Laparoendosc Adv Surg Tech. 2018;28(2):152–6.

    Google Scholar 

  5. Koninckx PR, Meuleman C, Demeyere S, Lesaffre E, Cornillie FJ. Suggestive evidence that pelvic endometriosis is a progressive disease, whereas deeply infiltrating endometriosis is associated with pelvic pain. Fertil Steril. 1991;55(4):759–65.

    CAS  PubMed  Google Scholar 

  6. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Javert CT. Pathogenesis of endometriosis based on endometrial homeoplasia, direct extension, exfoliation and implantation, lymphatic and hematogenous metastasis. Cancer. 1949;2(3):399–410.

    CAS  PubMed  Google Scholar 

  8. Beavis AL, Matsuo K, Grubbs BH, et al. Endometriosis in para-aortic lymph nodes during pregnancy: case report and review of literature. Fertil Steril. 2011;95(7):2429.e2429–13.

    Google Scholar 

  9. Hobbs JE, Bortnick AR. Endometriosis of the lungs: an experimental and clinical study. Am J Obstet Gynecol. 1940;40(5):832–43.

    Google Scholar 

  10. Sarma D, Iyengar P, Marotta TR, TerBrugge KG, Gentili F, Halliday W. Cerebellar endometriosis. Am J Roentgenol. 2004;182(6):1543–6.

    Google Scholar 

  11. Busard MPH, Van Der Houwen LEE, Bleeker MCG, et al. Deep infiltrating endometriosis of the bowel: MR imaging as a method to predict muscular invasion. Abdom Imaging. 2012;37(4):549–57.

    PubMed  Google Scholar 

  12. Abrao MS, Podgaec S, Dias JA Jr, et al. Deeply infiltrating endometriosis affecting the rectum and lymph nodes. Fertil Steril. 2006;86(3):543–7.

    PubMed  Google Scholar 

  13. Berbic M, Ng CHM, Black K, et al. A novel pilot study of endometrial stromal cells and immune cell populations in sentinel uterine-draining lymph nodes during the menstrual cycle and in endometriosis. Reprod Sci. 2013;20(11):1339–48.

    PubMed  Google Scholar 

  14. Mechsner S, Weichbrodt M, Riedlinger WFJ, Bartley J, Kaufmann AM, Schneider A, et al. Estrogen and progestogen receptor positive endometriotic lesions and disseminated cells in pelvic sentinel lymph nodes of patients with deep infiltrating rectovaginal endometriosis: a pilot study. Hum Reprod. 2008;23(10):2202–9.

    CAS  PubMed  Google Scholar 

  15. Mechsner S, Weichbrodt M, Riedlinger WFJ, Kaufmann AM, Schneider A, Kohler C. Immunohistochemical evaluation of endometriotic lesions and disseminated endometriosis-like cells in incidental lymph nodes of patients with endometriosis. Fertil Steril. 2010;94(2):457–63.

    PubMed  Google Scholar 

  16. Noel JC, Chapron C, Fayt I, Anaf V. Lymph node involvement and lymphovascular invasion in deep infiltrating rectosigmoid endometriosis. Fertil Steril. 2008;89(5):1069–72.

    PubMed  Google Scholar 

  17. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1–10.

    CAS  PubMed  Google Scholar 

  18. Berbic M, Hey-Cunningham AJ, Ng C, Tokushige N, Ganewatta S, Markham R, et al. The role of FoxP3+ regulatory T-cells in endometriosis: a potential controlling mechanism for a complex, chronic immunological condition. Hum Reprod. 2010;25(4):900–7.

    CAS  PubMed  Google Scholar 

  19. Oosterlynck DJ, Cornillie FJ, Waer M, Vandeputte M, Koninckx PR. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991;56(1):45–51.

    CAS  PubMed  Google Scholar 

  20. Garzetti GG, Ciavattini A, Provinciali M, Fabris N, Cignitti M, Romanini C. Natural killer cell activity in endometriosis: correlation between serum estradiol levels and cytotoxicity. Obstet Gynecol. 1993;81(5 I):665–8.

    CAS  PubMed  Google Scholar 

  21. Schulke L, Berbic M, Manconi F, Tokushige N, Markham R, Fraser IS. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis. Hum Reprod. 2009;24(7):1695–703.

    CAS  PubMed  Google Scholar 

  22. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39(3):273–8.

    CAS  PubMed  Google Scholar 

  23. Dharan M. The adjunctive value of CD10 immunostaining on cell block preparations in pelvic endometriosis. Acta Cytol. 2009;53(6):625–9.

    PubMed  Google Scholar 

  24. Sharpe-Timms KL. Endometrial anomalies in women with endometriosis. Ann N Y Acad Sci. 2001;943:131–47.

    CAS  PubMed  Google Scholar 

  25. O DF, Roskams T, Van den Eynde K, et al. The presence of endometrial cells in peritoneal fluid of women with and without endometriosis. Reprod Sci. 2017;24(2):242–51.

    PubMed  Google Scholar 

  26. Junt T, Scandella E, Ludewig B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol. 2008;8(10):764–75.

    CAS  PubMed  Google Scholar 

  27. Chantrain CF, DeClerck YA, Groshen S, McNamara G. Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem. 2003;51(2):151–8.

    CAS  PubMed  Google Scholar 

  28. McKay JS, Bigley A, Bell A, Jenkins R, Somers R, Brocklehurst S, et al. A pilot evaluation of the use of tissue microarrays for quantitation of target distribution in drug discovery pathology. Exp Toxicol Pathol. 2006;57(3):181–93.

    CAS  PubMed  Google Scholar 

  29. Tawfik OW, Kimler BF, Davis M, Donahue JK, Persons DL, Fan F, et al. Comparison of immunohistochemistry by automated cellular imaging system (ACIS) versus fluorescence in-situ hybridization in the evaluation of HER-2/neu expression in primary breast carcinoma. Histopathology. 2006;48(3):258–67.

    CAS  PubMed  Google Scholar 

  30. Doudkine A, Macaulay C, Poulin N, Palcic B. Nuclear texture measurements in image cytometry. Pathologica. 1995;87(3):286–99.

    CAS  PubMed  Google Scholar 

  31. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. NeuroReport. 2001;12(15):3257–62.

    CAS  PubMed  Google Scholar 

  32. Gong Y, Tempfer CB. Regional lymphatic spread in women with pelvic endometriosis. Med Hypotheses. 2011;76(4):560–3.

    PubMed  Google Scholar 

  33. Coutinho A, Bittencourt LK, Pires CE, et al. MR imaging in deep pelvic endometriosis: a pictorial essay. Radiographics. 2011;31(2):549–67.

    PubMed  Google Scholar 

  34. Keichel S, Barcena De Arellano ML, Reichelt U, et al. Lymphangiogenesis in deep infiltrating endometriosis. Hum Reprod. 2011;26(10):2713–20.

    CAS  PubMed  Google Scholar 

  35. Borrelli GM, Abrão MS, Taube ET, Darb-Esfahani S, Köhler C, Kaufmann AM, et al. Immunohistochemical investigation of metastasis-related chemokines in deep-infiltrating endometriosis and compromised pelvic sentinel lymph nodes. Reprod Sci. 2015;22(12):1632–42.

    CAS  PubMed  Google Scholar 

  36. Bajénoff M, Breart B, Huang AYC, Qi H, Cazareth J, Braud VM, et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med. 2006;203(3):619–31.

    PubMed  PubMed Central  Google Scholar 

  37. Gasteiger G, Ataide M, Kastenmüller W. Lymph node–an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271(1):200–20.

    CAS  PubMed  Google Scholar 

  38. Groom JR. Moving to the suburbs: T-cell positioning within lymph nodes during activation and memory. Immunol Cell Biol. 2015;93:330.

    CAS  PubMed  Google Scholar 

  39. Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci U S A. 1996;93(6):2245–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiang CM, Hill JA. Localization of T cells, interferon-gamma and HLA-DR in eutopic and ectopic human endometrium. Gynecol Obstet Invest. 1997;43(4):245–50.

    CAS  PubMed  Google Scholar 

  41. Ganewatta S, Berbic M, Luscombe GM, Markham R, Fraser IS. The characteristic expression and role of T cell subsets and CD57+ NK cells in different zones of peritoneal endometriotic lesions. J Endometriosis. 2010;2(4):189–96.

    Google Scholar 

  42. Jones RK, Bulmer JN, Searle RF. Phenotypic and functional studies of leukocytes in human endometrium and endometriosis. Hum Reprod Update. 1998;4(5):702–9.

    CAS  PubMed  Google Scholar 

  43. Kempuraj D, Papadopoulou N, Stanford EJ, et al. Increased numbers of activated mast cells in endometriosis lesions positive for corticotropin-releasing hormone and urocortin. Am J Reprod Immunol. 2004;52(4):267–75.

    PubMed  Google Scholar 

  44. Oosterlynck DJ, Cornillie FJ, Waer M, Koninckx PR. Immunohistochemical characterization of leucocyte subpopulations in endometriotic lesions. Arch Gynecol Obstet. 1993;253(4):197–206.

    CAS  PubMed  Google Scholar 

  45. Mor F, Quintana FJ, Cohen IR. Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol. 2004;172(7):4618–23.

    CAS  PubMed  Google Scholar 

  46. Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ. CD4+ cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS One. 2012;7(11):e49940.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Antsiferova YS, Sotnikova NY, Posiseeva LV, Shor AL. Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis. Fertil Steril. 2005;84(6):1705–11.

    CAS  PubMed  Google Scholar 

  48. Romagnani S. Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res. 1992;21(2–4):152–8.

    Google Scholar 

  49. Witz CA, Montoya IA, Dey TD, Schenken RS. Characterization of lymphocyte subpopulations and T cell activation in endometriosis. Am J Reprod Immunol. 1994;32(3):173–9.

    CAS  PubMed  Google Scholar 

  50. Yang X, Yang J, Chu Y, et al. T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PLoS One. 2014;9(2):e88441.

    PubMed  PubMed Central  Google Scholar 

  51. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10(4):236–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Eifel PJ. Can patients with regional metastases from carcinoma of the endometrium be cured with radiation therapy? Front Radiat Ther Oncol. 1994;28:196–203.

    CAS  PubMed  Google Scholar 

  53. Mais V, Cirronis MG, Piras B, Silvetti E, Cossu E, Melis GB. Intraoperative lymphatic mapping techniques for endometrial cancer. Expert Rev Anticancer Ther. 2011;11(1):83–93.

    PubMed  Google Scholar 

  54. Netter FH. A compilation of paintings on the normal and pathologic anatomy of the reproductive system, vol. 2. 2nd ed. New York: Ciba Pharmaceutical Company; 1965.

    Google Scholar 

  55. Tanaka H, Sato H, Miura H, Sato N, Fujimoto T, Konishi Y, et al. Can we omit para-aorta lymph node dissection in endometrial cancer? Jpn J Clin Oncol. 2006;36(9):578–81.

    PubMed  Google Scholar 

  56. Jiang QY, Xia JM, Ding HG, Fei XW, Lin J, Wu RJ. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod. 2012;18(9):435–41.

    CAS  PubMed  Google Scholar 

  57. Lessey BA, Metzger DA, Haney AF, McCarty KS Jr. Immunohistochemical analysis of estrogen and progesterone receptors in endometriosis: comparison with normal endometrium during the menstrual cycle and the effect of medical therapy. Fertil Steril. 1989;51(3):409–15.

    CAS  PubMed  Google Scholar 

  58. Shifren JL, Tseng JF, Zaloudek CJ, Ryan IP, Meng YG, Ferrara N, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112–8.

    CAS  PubMed  Google Scholar 

  59. Szuba A, Rockson SG. Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997;2(4):321–6.

    CAS  PubMed  Google Scholar 

  60. Tempfer CB, Wenzl R, Horvat R, et al. Lymphatic spread of endometriosis to pelvic sentinel lymph nodes: a prospective clinical study. Fertil Steril. 2011;96(3):692–6.

    PubMed  Google Scholar 

  61. Collarino A, Vidal-Sicart S, Perotti G, Valdés Olmos R. The sentinel node approach in gynaecological malignancies. Clin Transl Imaging. 2016;4(5):411–20.

    PubMed  PubMed Central  Google Scholar 

  62. Holloway RW, Abu-Rustum NR, Backes FJ, Boggess JF, Gotlieb WH, Jeffrey Lowery W, et al. Sentinel lymph node mapping and staging in endometrial cancer: a Society of Gynecologic Oncology literature review with consensus recommendations. Gynecol Oncol. 2017;146(2):405–15.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Ian S. Fraser and Dr. Marina Berbic (Department of Obstetrics and Gynaecology, The University of New South Wales) for the useful comments in the project’s early stage, Dr. Georgina Luscombe (School of Rural Health, The University of Sydney) for the statistical advice, and Dr. Louise Cole (Bosch Institute Advanced Microscopy Facility, The University of Sydney) and Sanaz Maleki (Department of Pathology, The University of Sydney) for the technical support.

Funding

This study was financially supported by the Department of Obstetrics, Gynaecology and Neonatology, The University of Sydney. This study was performed at the Department of Obstetrics, Gynaecology and Neonatology, The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison J. Hey-Cunningham.

Ethics declarations

This study was approved by the Human Research Ethics Committees of the Sydney Local Health District (Royal Prince Alfred Hospital [RPAH] zone; Protocol number X13-00037, HREC/13/RPAH/52) and the University of Sydney (Project number 2013/496).

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerman, L.F., Anderson, L., Markham, R. et al. The Lymphatic System in Endometriosis: a Pilot Study of Endometrial-Like Cells and Immune Cell Populations in Lymph Nodes Associated with Deep Infiltrating Bowel Lesions. Reprod. Sci. 27, 977–987 (2020). https://doi.org/10.1007/s43032-020-00171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00171-0

Keywords

Navigation