Skip to main content

Advertisement

Log in

Modulation of the Notch System in Response to Wnt Inhibition Induces Restoration of the Rat Luteal Function

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether the Notch pathway is modulated in response to the downregulation of the Wnt/Β-catenin system in corpora lutea (CLs) from superovulated rats. To this end, we analyzed the effect of in vitro CL Wnt/Β-catenin inhibition on the expression of Notch members and on luteal function. Mechanically isolated rat CLs were cultured with ICG-001, a Wnt/B-catenin inhibitor. In this system, Wnt/B-catenin inhibition reduced progesterone production and decreased StAR protein levels. Besides, Wnt/B-catenin inhibition stimulated the Notch system, evidenced by an increase in Hes1 expression, and promoted the expression of selected Notch family members. At long incubation times, StAR levels and progesterone concentration reached the control values, effects probably mediated by the Notch pathway. These results provide the first evidence of a compensatory mechanism between Wnt/B-catenin signaling and the Notch system, which contributes to the homeostasis of luteal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stouffer RL. The function and regulation of cell populations comprising the corpus luteum during the ovarian cycle.: San Diego: Elsevier, Academic Press; 2004.

  2. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28(1):117–49.

    Article  CAS  PubMed  Google Scholar 

  3. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17(3):221–44.

    CAS  PubMed  Google Scholar 

  4. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article  CAS  PubMed  Google Scholar 

  5. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  6. Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev. 2007;28(3):339–63.

    Article  CAS  PubMed  Google Scholar 

  7. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell. 1997;90(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  9. Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994;120(9):2385–96.

    CAS  PubMed  Google Scholar 

  10. Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001;109(2):355–61.

    Article  CAS  PubMed  Google Scholar 

  11. Vorontchikhina MA, Zimmermann RC, Shawber CJ, Tang H, Kitajewski J. Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expression Patterns : GEP. 2005;5(5):701–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jovanovic VP, Sauer CM, Shawber CJ, et al. Intraovarian regulation of gonadotropin-dependent folliculogenesis depends on notch receptor signaling pathways not involving Delta-like ligand 4 (Dll4). Reproductive Biology and Endocrinology : RB&E 2013;11:43.

  13. Hernandez F, Peluffo MC, Stouffer RL, Irusta G, Tesone M. Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol Reprod. 2011;84(5):859–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murta D, Batista M, Silva E, et al. Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod Fertil Dev. 2015;27(7).

  15. Accialini P, Hernandez SF, Bas D, et al. A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction. 2015;149(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Liu S, Peng L, Dong Q, Bao R, Lv Q, et al. Notch signaling pathway regulates progesterone secretion in murine luteal cells. Reprod Sci. 2015;22(10):1243–51.

    Article  CAS  PubMed  Google Scholar 

  17. Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab. 2010;21(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology. 2002;143(3):898–908.

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez Gifford JA. The role of WNT signaling in adult ovarian folliculogenesis. Reproduction. 2015;150(4):R137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsieh M, Mulders SM, Friis RR, Dharmarajan A, Richards JS. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells. Endocrinology. 2003;144(10):4597–606.

    Article  CAS  PubMed  Google Scholar 

  21. Accialini P, Irusta G, Bechis A, Bas D, Parborell F, Abramovich D, et al. Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats. Mol Reprod Dev. 2017;84(8):719–30.

    Article  CAS  PubMed  Google Scholar 

  22. Foltz DR, Santiago MC, Berechid BE, Nye JS. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol. 2002;12(12):1006–11.

    Article  CAS  PubMed  Google Scholar 

  23. Gopalakrishnan N, Saravanakumar M, Madankumar P, Thiyagu M, Devaraj H. Colocalization of beta-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation. Mol Cell Biochem. 2014;396(1–2):281–93.

    Article  CAS  PubMed  Google Scholar 

  24. Morris SL, Huang S. Crosstalk of the Wnt/beta-catenin pathway with other pathways in cancer cells. Genes & Diseases. 2016;3(1):41–7.

    Article  CAS  Google Scholar 

  25. Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development. 2008;135(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  26. Li B, Jia Z, Wang T, Wang W, Zhang C, Chen P, et al. Interaction of Wnt/beta-catenin and notch signaling in the early stage of cardiac differentiation of P19CL6 cells. J Cell Biochem. 2012;113(2):629–39.

    Article  CAS  PubMed  Google Scholar 

  27. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, et al. Nrarp coordinates endothelial notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16(1):70–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev. 2004;18(22):2718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamamizu K, Matsunaga T, Uosaki H, et al. Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol. 2010;189(2):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Germar K, Dose M, Konstantinou T, Zhang J, Wang H, Lobry C, et al. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci U S A. 2011;108(50):20060–5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A. 2011;108(36):14908–13.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ungerback J, Elander N, Grunberg J, Sigvardsson M, Soderkvist P. The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells. PLoS One. 2011;6(3):e17957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li C, Zhang Y, Lu Y, Cui Z, Yu M, Zhang S, et al. Evidence of the cross talk between Wnt and notch signaling pathways in non-small-cell lung cancer (NSCLC): Notch3-siRNA weakens the effect of LiCl on the cell cycle of NSCLC cell lines. J Cancer Res Clin Oncol. 2011;137(5):771–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Stoeck A, Lee SJ, Shih Ie M, Wang MM, Wang TL. Jagged1 expression regulated by Notch3 and Wnt/beta-catenin signaling pathways in ovarian cancer. Oncotarget. 2010;1(3):210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hernandez F, Peluffo MC, Bas D, Stouffer RL, Tesone M. Local effects of the sphingosine 1-phosphate on prostaglandin F2alpha-induced luteolysis in the pregnant rat. Mol Reprod Dev. 2009;76(12):1153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grigson ER, Ozerova M, Pisklakova A, Liu H, Sullivan DM, Nefedova Y. Canonical Wnt pathway inhibitor ICG-001 induces cytotoxicity of multiple myeloma cells in Wnt-independent manner. PLoS One. 2015;10(1):e0117693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irusta G, Parborell F, Peluffo M, Manna PR, Gonzalez-Calvar SI, Calandra R, et al. Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist. Biol Reprod. 2003;68(5):1577–83.

    Article  CAS  PubMed  Google Scholar 

  38. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A. 2004;101(34):12682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chung R, Wong D, Macsai C, Piergentili A, del Bello F, Quaglia W, et al. Roles of Wnt/beta-catenin signalling pathway in the bony repair of injured growth plate cartilage in young rats. Bone. 2013;52(2):651–8.

    Article  CAS  PubMed  Google Scholar 

  40. Maftouh M, Belo AI, Avan A, Funel N, Peters GJ, Giovannetti E, et al. Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/beta-catenin signalling in pancreatic adenocarcinoma. Oncotarget. 2014;5(14):5335–49.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rong M, Chen S, Zambrano R, Duncan MR, Grotendorst G, Wu S. Inhibition of beta-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung. Pediatr Res. 2016;80(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  42. Feng Y, Liang Y, Ren J, Dai C. Canonical Wnt signaling promotes macrophage proliferation during kidney fibrosis. Kidney Diseases. 2018;4(2):95–103.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li F, Liu Y, Cai Y, Li X, Bai M, Sun T, et al. Ultrasound irradiation combined with hepatocyte growth factor accelerate the hepatic differentiation of human bone marrow mesenchymal stem cells. Ultrasound Med Biol. 2018;44(5):1044–52.

    Article  PubMed  Google Scholar 

  44. Vanorny DA, Mayo KE. The role of notch signaling in the mammalian ovary. Reproduction. 2017;153(6):R187–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prasasya RD, Mayo KE. Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology. 2018;159(1):184–98.

    Article  CAS  PubMed  Google Scholar 

  46. Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep. 2002;3(9):840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garcia-Pascual CM, Zimmermann RC, Ferrero H, et al. Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil Steril. 2013;100(6):1768–76 e1761.

    Article  CAS  PubMed  Google Scholar 

  48. Fraser HM, Hastings JM, Allan D, Morris KD, Rudge JS, Wiegand SJ. Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology. 2012;153(4):1972–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hing HK, Sun X, Artavanis-Tsakonas S. Modulation of wingless signaling by Notch in Drosophila. Mech Dev. 1994;47(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  50. Roy L, McDonald CA, Jiang C, Maroni D, Zeleznik AJ, Wyatt TA, et al. Convergence of 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A and glycogen synthase kinase-3beta/beta-catenin signaling in corpus luteum progesterone synthesis. Endocrinology. 2009;150(11):5036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG, et al. Cyclin d1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat. 2010;123(1):113–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Universidad de Buenos Aires (Grant number: UBA 01/Q502), Fondo para la Investigación Científica y Tecnológica (Grant number: PICT 2014-0429), Consejo Nacional de Investigaciones Científicas y Técnicas (Grant number: PIP 177), and Rene Baron Foundation, Argentina; Williams Foundation, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Tesone.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accialini, P., Bechis, A., Irusta, G. et al. Modulation of the Notch System in Response to Wnt Inhibition Induces Restoration of the Rat Luteal Function. Reprod. Sci. 27, 503–512 (2020). https://doi.org/10.1007/s43032-019-00043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00043-2

Keywords

Navigation