Characterization of Mechanical Signature of Eutopic Endometrial Stromal Cells of Endometriosis Patients

Abstract

Endometriosis affects 5–10% of women in reproductive age and causes pelvic pain and subfertility. Exact etiology of the disease is unknown. Here, we present a microfluidic platform for characterizing mechanical properties of eutopic endometrial stromal cells of endometriosis patients based on cellular deformability inside narrow microchannels. Primary human endometrial stromal cells were isolated from eutopic endometrium of endometriosis patients (4407 cells, from 7 endometriosis patients) and from disease-free women (4541 cells, from 6 control women) and were pumped through microchannels (formed of polydimethylsiloxane (PDMS) by standard soft lithography, with dimensions of 8 × 20 × 150 μm, as width × height × length) at a constant flow rate of 2 μL/min. High-speed imaging was used to capture videos of cells as they flow inside microchannels, and a computer vision code was used to track cells, measure their area, and calculate the time each cell takes to pass through the microchannel. Compared with their counterparts from control women, eutopic endometrial stromal cells from endometriosis patients showed significantly increased deformation index (1.65 ± 0.2 versus 1.43 ± 0.19, respectively, P value < 0.001), and higher velocity in travelling through narrow microchannels (96.530 ± 0.710 mm/s versus 57.518 ± 0.585 mm/s, respectively, P value < 0.001). The same difference in velocities between the two cell types was maintained after controlling for cell area. Eutopic endometrial stromal cells of endometriosis patients showed a mechanical phenotype characterized by high deformability and reduced stiffness. This mechanical signature can represent basis of a mechanical biomarker of endometriosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Fassbender A, Vodolazkaia A, Saunders P, Lebovic D, Waelkens E, De Moor B, et al. Biomarkers of endometriosis. Fertil Steril. 2013;99(4):1135–45.

    CAS  PubMed  Google Scholar 

  2. 2.

    Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin N Am. 1997;24(2):235–58.

    CAS  Google Scholar 

  3. 3.

    Falcone T, Flyckt R. Clinical management of endometriosis. Obstet Gynecol. 2018;131(3):557–71.

    PubMed  Google Scholar 

  4. 4.

    Nnoaham KE, Hummelshoj L, Webster P, d’Hooghe T, de Cicco NF, de Cicco NC, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366–373.e8.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 2012;13(4):385–94.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Dunselman GA, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, De Bie B, et al. ESHRE guideline: management of women with endometriosis. Hum Reprod. 2014;29(3):400–12.

    CAS  PubMed  Google Scholar 

  7. 7.

    HarkkiSiren P, Kurki T. A nationwide analysis of laparoscopic complications. Obstet Gynecol. 1997;89(1):108–12.

    CAS  Google Scholar 

  8. 8.

    Ballard K, Lowton K, Wright J. What’s the delay? A qualitative study of women’s experiences of reaching a diagnosis of endometriosis. Fertil Steril. 2006;86(5):1296–301.

    PubMed  Google Scholar 

  9. 9.

    Patel BG, Lenk EE, Lebovic DI, Shu Y, Yu J, Taylor RN. Pathogenesis of endometriosis: interaction between endocrine and inflammatory pathways. Best Pract Res Clin Obstet Gynaecol. 2018;50:50–60.

    PubMed  Google Scholar 

  10. 10.

    Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–69.

    Google Scholar 

  11. 11.

    Giudice LC. Endometriosis. N Engl J Med. 2010;362(25):2389–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Giudice LC, Kao LC. Enometriosis. Lancet. 2004;364(9447):1789–99.

    PubMed  Google Scholar 

  13. 13.

    Matsuzaki S, Canis M, Pouly JL, Darcha C. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriosis stromal cells in vitro. Hum Reprod. 2016;31(3):541–53.

    CAS  PubMed  Google Scholar 

  14. 14.

    Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–9.

    CAS  Google Scholar 

  15. 15.

    Guo SW. Recurrence of endometriosis and its control. Hum Reprod Update. 2009;15(4):441–61.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Davis AC, Goldberg JM. Extrapelvic endometriosis. Semin Reprod Med. 2017;35(1):98–101.

    Google Scholar 

  17. 17.

    Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M, Horlings HM, et al. Caner- associated mutations in endometriosis without cancer. N Engl J Med. 2017;376(19):1835–48.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lekka M, Gil D, Pogoda K, Dulińska-Litewka J, Jach R, Gostek J, et al. Cancer cell detection in cancer tissue sections using AFM. Arch Biochem Biophys. 2012;518(2):151–619.

    CAS  PubMed  Google Scholar 

  19. 19.

    Suresh S. Nanomedicine: elastic clues in cancer detection. Nat Nanotechnol. 2007;2(12):748–9.

    CAS  PubMed  Google Scholar 

  20. 20.

    Ciasca G, Papi M, Minelli E, Palmieri V, De Spirito M. Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J Gastroenterol. 2016;22(32):7203–14.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hou HW, Li QS, Lee GYH, Kumar AP, Ong CN, Lim CT. Deformability study of breast cancer cells using microfluidics. Biomed Microdevices. 2009;11(3):557–64.

    CAS  PubMed  Google Scholar 

  22. 22.

    Herbig M, Krater M, Plak K, Muller P, Guck J, Otto O. Real-time deformability cytometry: label-free functional characterization of cells. In: Hawley TS, Hawley RG, editors. Flow cytometry protocols, vol. 2018. 4th ed; 1678. p. 347–69.

    Google Scholar 

  23. 23.

    Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG, Yang OO, et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A. 2012;109(20):7630–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J. 2001;81(2):767–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Carrarelli P, Funghi L, Bruni S, Luisi S, Arcuri F, Petraglia F. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression. Gynecol Endocrinol. 2016;32(4):319–22.

    CAS  PubMed  Google Scholar 

  26. 26.

    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70(23):4974–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Haubert K, Drier T, Beebe D. PDMS bonding by means of a portable, low-cost corona system. Lab Chip. 2006;6(12):1548–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Esmaeel AM, ElMelegy T, Abdelgawad M. Multi-purpose machine vision platform for different microfluidics applications. Biomed Microdevices. 2019;21:1–13. https://doi.org/10.1007/s10544-019-0401-1.

    Article  Google Scholar 

  29. 29.

    Weimar CHE, Macklon NS, Uiterweer EDP, Brosens JJ, Gellersen B. The motile and invasive capacity of human endometrial stromal cells: implications for normal and impaired reproductive function. Hum Reprod Update. 2013;19(5):542–57.

    CAS  PubMed  Google Scholar 

  30. 30.

    Witz CA, Dechaud H, Montoya-Rodriguez IA, Thomas MR, Nair AS, Centonze VE, et al. An in vitro model to study the pathogenesis of the early endometriosis lesion. Ann N Y Acad Sci. 2002;955:296–307 Discussion 340–292, 396–406.

    PubMed  Google Scholar 

  31. 31.

    Witz CA, Cho S, Centonze VE, Montoya-Rodriguez IA, Schenken RS. Time series analysis of transmesothelial invasion by endometrial stromal and epithelial cells using three-dimensional confocal microscopy. Fertil Steril. 2003;79(Suppl. 1):770–8.

    PubMed  Google Scholar 

  32. 32.

    Ferreira MC, Witz CA, Hammes LS, Kirma N, Petraglia F, Schenken RS, et al. Activin A increases invasiveness of endometrial cells in an in vitro model of human peritoneum. Mol Hum Reprod. 2008;14:301–7.

    CAS  PubMed  Google Scholar 

  33. 33.

    Ornek T, Fadiel A, Tan O, Naftolin F, Arici A. Regulation and activation of ezrin protein in endometriosis. Hum Reprod. 2008;23(9):2104–12.

    CAS  PubMed  Google Scholar 

  34. 34.

    Wenwei X, Roman M, Byungkyu K, Lijuan W, John M, Todd S. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One. 2012;7:e46609.

    Google Scholar 

  35. 35.

    Quan FS, Kim KS. Medical applications of the intrinsic mechanical properties of single cells. Acta Biochim Biophys Sin (Shanghai). 2016;48(10):865.

    CAS  PubMed  Google Scholar 

  36. 36.

    Suresh S. Biomechanics, and biophysics of cancer cells. Acta Biomater. 2007;3(4):413–38.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lawson CD, Ridley AJ. Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol. 2018;217(2):447–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Matsui T, Maeda M, Doi Y, et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. JCell Biol. 1998;140(3):647–57.

    CAS  Google Scholar 

  39. 39.

    Yotova IY, Quan P, Leditznig N, Beer U, Wenzl R, Tschugguel W. Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis. Hum Reprod. 2011;26(4):885–97.

    CAS  PubMed  Google Scholar 

  40. 40.

    Yotova I, Quan P, Gaba A, Leditznig N, Pateisky P, Kurz C, et al. Raf-1 levels determine the migration rate of primary endometrial stromal cells of patients with endometriosis. J Cell Mol Med. 2012;16(9):2127–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wu ZY, Yang XM, Cheng MJ, Zhang R, Ye J, Yi H, et al. Dysregulated cell mechanical properties of endometrial stromal cells from endometriosis patients. Int J Clin Exp Pathol. 2014;7(2):648–55.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gentilini D, Vigano P, Somigliana E, Vicentini LM, Vignali M, Busacca M, et al. Endometrial stromal cells from women with endometriosis reveal peculiar migratory behavior in response to ovarian steroids. Fertil Steril. 2010;93(3):706–15.

    CAS  PubMed  Google Scholar 

  43. 43.

    Mu L, Zheng W, Wang L, Chen X-J, Zhang X, Yang JH. Alteration of focal adhesion kinase expression in eutopic endometrium of women with endometriosis. Fertil Steril. 2008;89(3):529–37.

    CAS  PubMed  Google Scholar 

  44. 44.

    Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2(12):780–3.

    CAS  PubMed  Google Scholar 

  45. 45.

    Li QS, Lee GY, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun. 2008;374:609–13.

    CAS  PubMed  Google Scholar 

  46. 46.

    Panzetta V, Musella I, Rapa I, Volante M, Netti PA, Fusco S. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomater. 2017;57:334.

    CAS  PubMed  Google Scholar 

  47. 47.

    Nguyen AV, Nyberg KD, Scott MB, Welsh AM, Nguyen AH, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8(12):1232–45.

    CAS  Google Scholar 

  48. 48.

    Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One. 2012;7:e46609.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J. 1999;28(4):312–6.

    CAS  PubMed  Google Scholar 

  50. 50.

    Fuldeore M, Chwalisz K, Marx S, Wu N, Boulanger L, Ma L, et al. Surgical procedures and their cost estimates among women with newly diagnosedendometriosis: a US database study. J Med Econ. 2011;14(1):115–23.

    CAS  PubMed  Google Scholar 

  51. 51.

    Yokokawa R, Saika T, Nakayama T, Fujita H, Konishi S. On-chip syringe pumps for picoliter-scale liquid manipulation. Lab Chip. 2006;6(8):1062–6.

    CAS  PubMed  Google Scholar 

  52. 52.

    Wang KI, Salcic Z, Yeh J, Akagi J, Zhu F, Hall CJ, et al. Biosensors and bioelectronics toward embedded laboratory automation for smart lab-on-a-chip embryo arrays. Biosens Bioelectron. 2013;48:188–96.

    CAS  PubMed  Google Scholar 

  53. 53.

    Al-Mofty S, Elbadri N, Altayyeb A, Omar O, Elsayed M, Shamseldine A, et al. One stop lab-on-chip platform for tissue processing and cell sample preparation. 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, Dublin, Ireland.

  54. 54.

    Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices. 2008;10(2):251–7.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Professor Felice Petraglia, University of Florence, Italy, and Dr. Felice Arcuri, Siena University, Italy, for providing the protocol for endometrial stromal cell isolation and culture.

Funding

The study was funded by a grant from Science and Technology Development Fund of Egypt (STDF) to E.O. (grant ID # 5525). Microchannels used in this study were fabricated at the clean room of the Faculty of Engineering which was established through a grant from the Science and Technology Development Fund of Egypt (STDF) to M.A. (grant ID # 4918).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Essam Othman or Mohamed Abdelgawad.

Ethics declarations

All participating women provided written informed consent. Institutional Review Board at Faculty of Medicine, Assiut University, approved the use of human endometrial tissue samples for this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(AVI 7073 kb)

ESM 2

(AVI 2757 kb)

ESM 3

(AVI 7144 kb)

ESM 4

(AVI 2817 kb)

ESM 5

(DOCX 2573 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altayyeb, A., Othman, E., Khashbah, M. et al. Characterization of Mechanical Signature of Eutopic Endometrial Stromal Cells of Endometriosis Patients. Reprod. Sci. 27, 364–374 (2020). https://doi.org/10.1007/s43032-019-00042-3

Download citation

Keywords

  • Mechanical stiffness
  • Endometrium
  • Stromal cells
  • Endometriosis
  • Microfluidics