Skip to main content
Log in

Lipotoxicity Impairs Granulosa Cell Function Through Activated Endoplasmic Reticulum Stress Pathway

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Obesity is closely related to reproductive disorders, which may eventually lead to infertility in both males and females. Ovarian granulosa cells play a critical role during the maintenance of oocyte development through the generation of sex steroids (mainly estradiol and progesterone) and different kinds of growth factors. However, the molecular mechanism of obesity-induced granulosa cell dysfunction remains poorly investigated. In our current study, we observed that high-fat diet feeding significantly increased the level of glucose-regulated protein 78 kDa (GRP78) protein expression in mouse granulosa cells; testosterone-induced estradiol generation was impaired accordingly. To further evaluate the precise mechanism of lipotoxicity-induced granulosa cell dysfunction, mouse primary granulosa cells were treated with palmitate, and the expression levels of ER stress markers were evaluated by real-time PCR and western blot. Lipotoxicity significantly increased ER stress but impaired the mRNA expression of granulosa cell function-related makers, including androgen receptor (Ar), cytochrome P450 family 19 subfamily A member 1 (Cyp19a1), hydroxysteroid 17-beta dehydrogenase 1 (Hsd17b1), and insulin receptor substrate 1 (Irs1). Impaired testosterone-induced estradiol generation was also observed in cultured mouse granulosa cells after palmitate treatment. Insulin augmented testosterone induced estradiol generation through activation of the AKT pathway. However, palmitate treatment abolished insulin-promoted aromatase expression and estradiol generation by the stimulation of ER stress. Overexpression of IRS1 significantly ameliorated palmitate- or tunicamycin-induced impairment of aromatase expression and estradiol generation. Taken together, our current study demonstrated that lipotoxicity impaired insulin-stimulated estradiol generation through activated ER stress and inhibited IRS1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012;56(10-12):819–31.

    CAS  PubMed  Google Scholar 

  2. Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction. 2011;142(5):633–46.

    CAS  PubMed  Google Scholar 

  3. Patel S, Zhou C, Rattan S, Flaws JA. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93(1):20.

    PubMed  PubMed Central  Google Scholar 

  4. Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473(11):1483–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhatia B, Price CA. Insulin alters the effects of follicle stimulating hormone on aromatase in bovine granulosa cells in vitro. Steroids. 2001;66(6):511–9.

    CAS  PubMed  Google Scholar 

  7. Fuhrmeister IP, Branchini G, Pimentel AM, Ferreira GD, Capp E, Brum IS, et al. Human granulosa cells: insulin and insulin-like growth factor-1 receptors and aromatase expression modulation by metformin. Gynecol Obstet Invest. 2014;77(3):156–62.

    CAS  PubMed  Google Scholar 

  8. Aydos A, Gurel A, Oztemur Islakoglu Y, Noyan S, Gokce B, Ecemis T, et al. Identification of polycystic ovary syndrome (PCOS) specific genes in cumulus and mural granulosa cells. PLoS One. 2016;11(12):e0168875.

    PubMed  PubMed Central  Google Scholar 

  9. Ding L, Gao F, Zhang M, et al. Higher PDCD4 expression is associated with obesity, insulin resistance, lipid metabolism disorders, and granulosa cell apoptosis in polycystic ovary syndrome. Fertil Steril. 2016;105(5):1330–7 e1333.

    CAS  PubMed  Google Scholar 

  10. Pasquali R, Pelusi C, Genghini S, Cacciari M, Gambineri A. Obesity and reproductive disorders in women. Hum Reprod Update. 2003;9(4):359–72.

    PubMed  Google Scholar 

  11. Merhi Z, Polotsky AJ, Bradford AP, Buyuk E, Chosich J, Phang T, et al. Adiposity alters genes important in inflammation and cell cycle division in human cumulus granulosa cell. Reprod Sci. 2015;22(10):1220–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao J, Li Z, Fu Y, Wu R, Wang Y, Liu C, et al. Involvement of obesity-associated upregulation of chemerin/chemokine-like receptor 1 in oxidative stress and apoptosis in ovaries and granulosa cells. Biochem Biophys Res Commun. 2019;510(3):449–55.

    CAS  PubMed  Google Scholar 

  13. Xu P, Huang BY, Zhan JH, et al. Insulin reduces reaction of follicular granulosa cell to FSH stimulation in obesity-related infertility women during IVF. J Clin Endocrinol Metab. 2018.

  14. Merhi Z, Buyuk E, Berger DS, et al. Leptin suppresses anti-Mullerian hormone gene expression through the JAK2/STAT3 pathway in luteinized granulosa cells of women undergoing IVF. Hum Reprod. 2013;28(6):1661–9.

    CAS  PubMed  Google Scholar 

  15. Robker RL, Wu LL, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88(2):142–8.

    CAS  PubMed  Google Scholar 

  16. Takahashi N, Harada M, Hirota Y, et al. Activation of endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis. Sci Rep. 2017;7(1):10824.

    PubMed  PubMed Central  Google Scholar 

  17. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol. 2008;295(2):F323–34.

    CAS  PubMed  Google Scholar 

  19. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    CAS  PubMed  Google Scholar 

  20. Harada M, Nose E, Takahashi N, et al. Evidence of the activation of unfolded protein response in granulosa and cumulus cells during follicular growth and maturation. Gynecol Endocrinol. 2015;31(10):783–7.

    CAS  PubMed  Google Scholar 

  21. Lin P, Yang Y, Li X, et al. Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol Reprod Dev. 2012;79(6):423–32.

    CAS  PubMed  Google Scholar 

  22. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012;18(1):59–68.

    CAS  PubMed  Google Scholar 

  23. Kim OK, Jun W, Lee J. Mechanism of ER stress and inflammation for hepatic insulin resistance in obesity. Ann Nutr Metab. 2015;67(4):218–27.

    CAS  PubMed  Google Scholar 

  24. Horwath JA, Hurr C, Butler SD, et al. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight. 2017;2(8).

  25. Voronina E, Lovasco LA, Gyuris A, Baumgartner RA, Parlow AF, Freiman RN. Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Dev Biol. 2007;303(2):715–26.

    CAS  PubMed  Google Scholar 

  26. Tian Y, Shen W, Lai Z, Shi L, Yang S, Ding T, et al. Isolation and identification of ovarian theca-interstitial cells and granulose cells of immature female mice. Cell Biol Int. 2015;39(5):584–90.

    CAS  PubMed  Google Scholar 

  27. Zhou Y, Chung ACK, Fan R, Lee HM, Xu G, Tomlinson B, et al. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxid Redox Signal. 2017;27(13):962–76.

    CAS  PubMed  Google Scholar 

  28. Datta J, Palmer MJ, Tanton C, Gibson LJ, Jones KG, Macdowall W, et al. Prevalence of infertility and help seeking among 15 000 women and men. Hum Reprod. 2016;31(9):2108–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018.

  30. Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril. 2017;107(4):840–7.

    PubMed  Google Scholar 

  31. Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update. 2015;21(2):249–61.

    CAS  PubMed  Google Scholar 

  32. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22(6):709–24.

    CAS  PubMed  Google Scholar 

  33. Zhao KK, Cui YG, Jiang YQ, et al. Effect of HSP10 on apoptosis induced by testosterone in cultured mouse ovarian granulosa cells. Eur J Obstet Gynecol Reprod Biol. 2013;171(2):301–6.

    CAS  PubMed  Google Scholar 

  34. Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han YB, et al. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150(4):289–96.

    CAS  PubMed  Google Scholar 

  35. Banuls C, Rovira-Llopis S. Martinez de Maranon A, et al. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS. Metabolism. 2017;71:153–62.

    CAS  PubMed  Google Scholar 

  36. Takahashi N, Harada M, Hirota Y, Zhao L, Yoshino O, Urata Y, et al. A potential role of endoplasmic reticulum stress in development of ovarian hyperstimulation syndrome. Mol Cell Endocrinol. 2016;428:161–9.

    CAS  PubMed  Google Scholar 

  37. Takahashi N, Harada M, Hirota Y, Zhao L, Azhary JM, Yoshino O, et al. A potential role for endoplasmic reticulum stress in progesterone deficiency in obese women. Endocrinology. 2017;158(1):84–97.

    CAS  PubMed  Google Scholar 

  38. Nteeba J, Ganesan S, Keating AF. Progressive obesity alters ovarian folliculogenesis with impacts on pro-inflammatory and steroidogenic signaling in female mice. Biol Reprod. 2014;91(4):86.

    PubMed  PubMed Central  Google Scholar 

  39. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20(2):373–81.

    CAS  PubMed  Google Scholar 

  40. Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006;12(7):324–32.

    CAS  PubMed  Google Scholar 

  41. Zhao S, Xu H, Cui Y, Wang W, Qin Y, You L, et al. Metabolic actions of insulin in ovarian granulosa cells were unaffected by hyperandrogenism. Endocrine. 2016;53(3):823–30.

    CAS  PubMed  Google Scholar 

  42. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal. 2006;18(9):1351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parakh TN, Hernandez JA, Grammer JC, Weck J, Hunzicker-Dunn M, Zeleznik AJ, et al. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc Natl Acad Sci U S A. 2006;103(33):12435–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee CT, Wang JY, Chou KY, Hsu MI. 1,25-Dihydroxyvitamin D3 increases testosterone-induced 17beta-estradiol secretion and reverses testosterone-reduced connexin 43 in rat granulosa cells. Reprod Biol Endocrinol. 2014;12:90.

    PubMed  PubMed Central  Google Scholar 

  45. Wada Y, Tsuiki A, Fukaya T, Shinkawa O, Satoh S, Horiguchi M, et al. Effects of androgen on 17 beta-estradiol production by cultured human granulosa cells. Tohoku J Exp Med. 1988;154(3):253–60.

    CAS  PubMed  Google Scholar 

  46. Moon YS, Tsang BK, Simpson C, Armstrong DT. 17 beta-Estradiol biosynthesis in cultured granulosa and thecal cells of human ovarian follicles: stimulation by follicle-stimulating hormone. J Clin Endocrinol Metab. 1978;47(2):263–7.

    CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by Medical Research Grant of Jiangsu Commission of Health (H2017043) and Jiangsu Innovative and Entrepreneurial Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhou, Jianquan Chen or Rong Ju.

Ethics declarations

All animal protocols were approved by the Animal Care and Use Committee of the Model Animal Research Center of Nanjing Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, D., Zhou, Y., Lu, Y. et al. Lipotoxicity Impairs Granulosa Cell Function Through Activated Endoplasmic Reticulum Stress Pathway. Reprod. Sci. 27, 119–131 (2020). https://doi.org/10.1007/s43032-019-00014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00014-7

Keywords

Navigation