Skip to main content
Log in

The Mutation of the Ap3b1 Gene Causes Uterine Hypoplasia in Pearl Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2020

This article has been updated

Abstract

The pearl (pe) mouse mutant has been identified as a model for Hermansky-Pudlak syndrome and bears a mutation in the beta3A subunit of the AP-3 complex, which has a core function in the biogenesis and function of various lysosomal-related organelles. Through large-scale mating, we found that female pearl mice also displayed reduced fertility with a smaller litter size. Abnormal uteri in both 1-month-old and 3-month-old mice were observed as having short and thin uterine horns, indicating abnormal development. Histological studies revealed that the endometrial epithelium and endometrial stoma of the uterus were both thinner than those in the normal controls. We examined some key factors in uterine development, including the Hoxa10, Hoxa11, and Wnt5a genes, and found that they all presented lower mRNA and protein levels. The pearl mouse could serve as a model for uterine hypoplasia, a common problem in female infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 03 February 2020

    The authors are deeply sorry that, due to an unintentional mistake, the proof-editing procedure was skipped. A major mistake must be corrected: Fig. 2C contains pictures from a mislabeled folder and should be replaced as shown in the updated Fig. 2 below.

References

  1. Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood. 1959;14(2):162–9.

    Article  CAS  Google Scholar 

  2. Feng L, Seymour AB, Jiang S, To A, Peden AA, Novak EK, et al. The beta3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Hum Mol Genet. 1999;8(2):323–30.

    Article  CAS  Google Scholar 

  3. Vallejo MO, Niemeyer GP, Vaglenov A, Hock T, Urie B, Christopherson P, et al. Decreased hematopoietic progenitor cell mobilization in pearl mice. Exp Hematol. 2013;41(10):848–57.

    Article  CAS  Google Scholar 

  4. Vicary GW, Vergne Y, Santiago-Cornier A. Pulmonary fibrosis in Hermansky-Pudlak syndrome. Ann Am Thorac Soc. 2016;13(10):1839–46.

    PubMed  PubMed Central  Google Scholar 

  5. Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet. 2008;9:359–86.

    Article  CAS  Google Scholar 

  6. Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res. 2013;26(2):176–92.

    Article  CAS  Google Scholar 

  7. Kook S, Wang P, Young LR, Schwake M, Saftig P, Weng X, et al. Impaired lysosomal integral membrane protein 2-dependent peroxiredoxin 6 delivery to lamellar bodies accounts for altered alveolar phospholipid content in adaptor protein-3-deficient pearl mice. J Biol Chem. 2016;291(16):8414–27.

    Article  CAS  Google Scholar 

  8. Badolato R, Parolini S. Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol. 2007;120(4):735–41.

    Article  CAS  Google Scholar 

  9. Mantegazza AR, Guttentag SH, El-Benna J, et al. Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4(+) T cells. Immunity. 2012;36(5):782–94.

    Article  CAS  Google Scholar 

  10. Young LR, Borchers MT, Allen HL, et al. Lung-restricted macrophage activation in the pearl mouse model of Hermansky-Pudlak syndrome. J Immunol. 2006;176(7):4361–8.

    Article  CAS  Google Scholar 

  11. Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19(1):67–83.

    Article  CAS  Google Scholar 

  12. Kisu I, Tanaka K, Banno K, Okuda S, Aoki D. Repair of congenital 'disconnected uterus': a new female genital anomaly? Hum Reprod. 2015;30(1):46–8.

    Article  Google Scholar 

  13. Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update. 2014;20(4):517–29.

    Article  CAS  Google Scholar 

  14. Jing R, Dong X, Li K, et al. The Ap3b1 gene regulates the ocular melanosome biogenesis and tyrosinase distribution differently from the Hps1 gene. Exp Eye Res. 2014;128(11):57–66.

    Article  CAS  Google Scholar 

  15. Feng L, Novak EK, Hartnell LM, Bonifacino JS, Collinson LM, Swank RT. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS2 genes independently contribute to the production and function of platelet dense granules, melanosomes, and lysosomes. Blood. 2002;99(5):1651–8.

    Article  CAS  Google Scholar 

  16. Miller C, Pavlova A, Sassoon DA. Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle. Mech Dev. 1998;76(1-2):91–9.

    Article  CAS  Google Scholar 

  17. Du H, Taylor HS. The role of Hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb Perspect Med. 2015;6(1). https://doi.org/10.1101/cshperspect.a023002.

    Article  Google Scholar 

  18. Li W, Rusiniak ME, Chintala S, Gautam R, Novak EK, Swank RT. Murine Hermansky-Pudlak syndrome genes: regulators of lysosome related organelles. Bioessays. 2004;26(6):616–28.

    Article  CAS  Google Scholar 

  19. Starcevic M, Dell’Angelica EC. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem. 2004;279:28393–401.

    Article  CAS  Google Scholar 

  20. Gautam R, Novak EK, Tan J, Wakamatsu K, Ito S, Swank RT. Interaction of Hermansky-Pudlak syndrome genes in the regulation of lysosome-related organelles. Traffic. 2006;7(7):779–92.

    Article  CAS  Google Scholar 

  21. Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development. 2004;131(9):2061–72.

    Article  CAS  Google Scholar 

  22. Wang G, Zhang Z, Chen C, Zhang Y, Zhang C. Dysfunction of WNT4/WNT5A in deciduas: possible relevance to the pathogenesis of preeclampsia. J Hypertens. 2016;34(4):719–27.

    Article  CAS  Google Scholar 

  23. Bagot CN, Kliman HJ, Taylor HS. Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryo implantation. Dev Dyn. 2001;222(3):538–44.

    Article  CAS  Google Scholar 

  24. Taylor HS, Arici A, Olive D, et al. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–84.

    Article  CAS  Google Scholar 

  25. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997 Dec;57(6):1338–45.

    Article  CAS  Google Scholar 

  26. Fischer CP, Kayisili U, Taylor HS. HOXA10 expression is decreased in endometrium of women with adenomyosis. Fertil Steril. 2011;95(3):1133–6.

    Article  CAS  Google Scholar 

  27. Wong KH, Wintch HD, Capecchi MR. Hoxa11 regulates stromal cell death and proliferation during neonatal uterine development. Mol Endocrinol. 2004;18(1):184–93.

    Article  CAS  Google Scholar 

  28. Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod. 1997;56(5):1097–105.

    Article  CAS  Google Scholar 

  29. Daikoku T, Song H, Guo Y, Riesewijk A, Mosselman S, Das SK, et al. Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine-homeobox-Wnt signaling in implantation. Mol Endocrinol. 2004;18(5):1238–50.

    Article  CAS  Google Scholar 

  30. Bolnick AD, Bolnick JM, Kilburn BA, Stewart T, Oakes J, Rodriguez-Kovacs J, et al. Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility. Hum Reprod. 2016;31(9):2042–50.

    Article  CAS  Google Scholar 

  31. Yan HX, Yang W, Zhang R, Chen L, Tang L, Zhai B, et al. Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion. J Biol Chem. 2006;281(22):15423–33.

    Article  CAS  Google Scholar 

  32. Yan HX, He YQ, Dong H, Zhang P, Zeng JZ, Cao HF, et al. Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin. Biochemistry. 2002;41(52):15854–60.

    Article  CAS  Google Scholar 

  33. Becka S, Zhang P, Craig SE, Lodowski DT, Wang Z, Brady-Kalnay SM. Characterization of the adhesive properties of the type IIb subfamily receptor protein tyrosine phosphatases. Cell Commun Adhes. 2010;17(2):34–47.

    Article  CAS  Google Scholar 

  34. Dong H, Yuan H, Jin W, Shen Y, Xu X, Wang H. Involvement of beta3A subunit of adaptor protein-3 in intracellular trafficking of receptor-like protein tyrosine phosphatase PCP-2. Acta Biochim Biophys Sin. 2007;39(7):540–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Drs. Richard Swank and Edward Novak for the HPS mice.

Funding

This study was supported by general programs from the Natural Science Foundation of China (31171446, 81501531, 30971659, and 90608001) and key program from the Natural Science Foundation of Shandong Province (Z2008C07) to Dr. Lijun Feng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Han or Lijun Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, R., Kong, Y., Han, G. et al. The Mutation of the Ap3b1 Gene Causes Uterine Hypoplasia in Pearl Mice. Reprod. Sci. 27, 182–191 (2020). https://doi.org/10.1007/s43032-019-00006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00006-7

Keywords

Navigation