Skip to main content

Advertisement

Log in

The Regulation of Uterine Function During Parturition: an Update and Recent Advances

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Successful pregnancy necessitates that the uterus is maintained in a relaxed, quiescent state for the majority of pregnancy, before being transformed to a contractile and excitable phenotype to facilitate parturition. There is now a substantial body of evidence highlighting key upstream regulators involved in this transformation. Despite our rapidly advancing knowledge of myometrial biology, the exact mechanisms that regulate parturition are not yet understood. Further work is necessary to define the complex interactions that form the key regulatory pathways controlling uterine quiescence, contractility, and the transition between the two states. Furthermore, new evidence continues to emerge implicating novel mechanisms that regulate uterine activity during normal and preterm birth. This review examines current evidence pertaining to key upstream regulators that have been implicated in human parturition over the past decades and surveys recent findings that are yet to be integrated into the paradigm of uterine regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blencowe H, Cousens S, Chou D, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10(Suppl 1):1–14.

    Google Scholar 

  2. Challis JR, Sloboda DM, Alfaidy N, et al. Prostaglandins and mechanisms of preterm birth. Reproduction. 2002;124(1):1–17.

    CAS  PubMed  Google Scholar 

  3. Dodd JM, Crowther CA. The role of progesterone in prevention of preterm birth. Int J Women's Health. 2010;1:73–84.

    Google Scholar 

  4. Mesiano S. Myometrial progesterone responsiveness. Semin Reprod Med. 2007;25(1):5–13.

    CAS  PubMed  Google Scholar 

  5. Parkinson JR, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics. 2013;131(4):e1240–63.

    PubMed  Google Scholar 

  6. Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–6.

    CAS  PubMed  Google Scholar 

  7. Li S, Zhang M, Tian H, Liu Z, Yin X, Xi B. Preterm birth and risk of type 1 and type 2 diabetes: systematic review and meta-analysis. Obes Rev. 2014;15(10):804–11.

    CAS  PubMed  Google Scholar 

  8. Kajantie E, Hovi P. Is very preterm birth a risk factor for adult cardiometabolic disease? Semin Fetal Neonatal Med. 2014;19(2):112–7.

    PubMed  Google Scholar 

  9. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514–50.

    CAS  PubMed  Google Scholar 

  10. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J Soc Gynecol Investig. 2004;11(4):193–202.

    CAS  PubMed  Google Scholar 

  11. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112(8):1095–100.

    CAS  PubMed  Google Scholar 

  12. Walsh SW, Stanczyk FZ, Novy MJ. Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species. J Clin Endocrinol Metab. 1984;58(4):629–39.

    CAS  PubMed  Google Scholar 

  13. Lopez Bernal A, Europe-Finner GN, Phaneuf S, Watson SP. Preterm labour: a pharmacological challenge. Trends Pharmacol Sci. 1995;16(4):129–33.

    CAS  PubMed  Google Scholar 

  14. Omini C, Folco GC, Pasargiklian R, Fano M, Berti F. Prostacyclin (PGI2) in pregnant human uterus. Prostaglandins. 1979;17(1):113–20.

    CAS  PubMed  Google Scholar 

  15. Shmygol A, Gullam J, Blanks A, Thornton S. Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility. Acta Pharmacol Sin. 2006;27(7):827–32.

    CAS  PubMed  Google Scholar 

  16. Smith R, Paul J, Maiti K, Tolosa J, Madsen G. Recent advances in understanding the endocrinology of human birth. Trends Endocrinol Metab. 2012;23(10):516–23.

    CAS  PubMed  Google Scholar 

  17. Sasaki A, Shinkawa O, Margioris AN, et al. Immunoreactive corticotropin-releasing hormone in human plasma during pregnancy, labor, and delivery. J Clin Endocrinol Metab. 1987;64(2):224–9.

    CAS  PubMed  Google Scholar 

  18. Goland RS, Wardlaw SL, Blum M, Tropper PJ, Stark RI. Biologically active corticotropin-releasing hormone in maternal and fetal plasma during pregnancy. Am J Obstet Gynecol. 1988;159(4):884–90.

    CAS  PubMed  Google Scholar 

  19. Laatikainen T, Salminen K, Virtanen T, Apter D. Plasma beta-endorphin, beta-lipotropin and corticotropin in polycystic ovarian disease. Eur J Obstet Gynecol Reprod Biol. 1987;24(4):327–33.

    CAS  PubMed  Google Scholar 

  20. Campbell EA, Linton EA, Wolfe CD, Scraggs PR, Jones MT, Lowry PJ. Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J Clin Endocrinol Metab. 1987;64(5):1054–9.

    CAS  PubMed  Google Scholar 

  21. Orth DN, Mount CD. Specific high-affinity binding protein for human corticotropin-releasing hormone in normal human plasma. Biochem Biophys Res Commun. 1987;143(2):411–7.

    CAS  PubMed  Google Scholar 

  22. Linton EA, Perkins AV, Woods RJ, et al. Corticotropin releasing hormone-binding protein (CRH-BP): plasma levels decrease during the third trimester of normal human pregnancy. J Clin Endocrinol Metab. 1993;76(1):260–2.

    CAS  PubMed  Google Scholar 

  23. Perkins AV, Eben F, Wolfe CD, Schulte HM, Linton EA. Plasma measurements of corticotrophin-releasing hormone-binding protein in normal and abnormal human pregnancy. J Endocrinol. 1993;138(1):149–57.

    CAS  PubMed  Google Scholar 

  24. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1(5):460–3.

    CAS  PubMed  Google Scholar 

  25. Inder WJ, Prickett TC, Ellis MJ, et al. The utility of plasma CRH as a predictor of preterm delivery. J Clin Endocrinol Metab. 2001;86(12):5706–10.

    CAS  PubMed  Google Scholar 

  26. Grammatopoulos DK, Hillhouse EW. Role of corticotropin-releasing hormone in onset of labour. Lancet. 1999;354(9189):1546–9.

    CAS  PubMed  Google Scholar 

  27. Petraglia F, Sutton S, Vale W. Neurotransmitters and peptides modulate the release of immunoreactive corticotropin-releasing factor from cultured human placental cells. Am J Obstet Gynecol. 1989;160(1):247–51.

    CAS  PubMed  Google Scholar 

  28. Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF. Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem. 1988;263(34):18466–72.

    CAS  PubMed  Google Scholar 

  29. Cheng YH, Nicholson RC, King B, Chan EC, Fitter JT, Smith R. Corticotropin-releasing hormone gene expression in primary placental cells is modulated by cyclic adenosine 3',5'-monophosphate. J Clin Endocrinol Metab. 2000;85(3):1239–44.

    CAS  PubMed  Google Scholar 

  30. Grammatopoulos D, Stirrat GM, Williams SA, Hillhouse EW. The biological activity of the corticotropin-releasing hormone receptor-adenylate cyclase complex in human myometrium is reduced at the end of pregnancy. J Clin Endocrinol Metab. 1996;81(2):745–51.

    CAS  PubMed  Google Scholar 

  31. Cheng YH, Nicholson RC, King B, Chan EC, Fitter JT, Smith R. Glucocorticoid stimulation of corticotropin-releasing hormone gene expression requires a cyclic adenosine 3',5'-monophosphate regulatory element in human primary placental cytotrophoblast cells. J Clin Endocrinol Metab. 2000;85(5):1937–45.

    CAS  PubMed  Google Scholar 

  32. Ni X, Hou Y, Yang R, Tang X, Smith R, Nicholson RC. Progesterone receptors A and B differentially modulate corticotropin-releasing hormone gene expression through a cAMP regulatory element. Cell Mol Life Sci. 2004;61(9):1114–22.

    CAS  PubMed  Google Scholar 

  33. Tyson EK, Smith R, Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy. Endocrinology. 2009;150(12):5617–25.

    CAS  PubMed  Google Scholar 

  34. Lyall F, Lye S, Teoh T, Cousins F, Milligan G, Robson S. Expression of Gsalpha, connexin-43, connexin-26, and EP1, 3, and 4 receptors in myometrium of prelabor singleton versus multiple gestations and the effects of mechanical stretch and steroids on Gsalpha. J Soc Gynecol Investig. 2002;9(5):299–307.

    CAS  PubMed  Google Scholar 

  35. Miyoshi H, Boyle MB, MacKay LB, Garfield RE. Voltage-clamp studies of gap junctions between uterine muscle cells during term and preterm labor. Biophys J. 1996;71(3):1324–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitchell JA, Lye SJ. Differential activation of the connexin 43 promoter by dimers of activator protein-1 transcription factors in myometrial cells. Endocrinology. 2005;146(4):2048–54.

    CAS  PubMed  Google Scholar 

  37. Wu X, Shen H, Yu L, Peng M, Lai WS, Ding YL. Corticotropin-releasing hormone activates connexin 43 via activator protein-1 transcription factor in human myometrial smooth muscle cells. Am J Physiol Endocrinol Metab. 2007;293(6):E1789–94.

    CAS  PubMed  Google Scholar 

  38. Zhang LM, Wang YK, Hui N, et al. Corticotropin-releasing hormone acts on CRH-R1 to inhibit the spontaneous contractility of non-labouring human myometrium at term. Life Sci. 2008;83(17-18):620–4.

    CAS  PubMed  Google Scholar 

  39. Csapo A. Progesterone block. Am J Anat. 1956;98(2):273–91.

    CAS  PubMed  Google Scholar 

  40. Allport VC, Pieber D, Slater DM, Newton R, White JO, Bennett PR. Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol Hum Reprod. 2001;7(6):581–6.

    CAS  PubMed  Google Scholar 

  41. Liggins GC. Initiation of labour. Biol Neonate. 1989;55(6):366–75.

    CAS  PubMed  Google Scholar 

  42. Liggins GC, Fairclough RJ, Grieves SA, Kendall JZ, Knox BS. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res. 1973;29:111–59.

    CAS  PubMed  Google Scholar 

  43. Young IR. The comparative physiology of parturition in mammals. Front Horm Res. 2001;27:10–30.

    CAS  PubMed  Google Scholar 

  44. Boroditsky RS, Reyes FI, Winter JS, Faiman C. Maternal serum estrogen and progesterone concentrations preceding normal labor. Obstet Gynecol. 1978;51(6):686–91.

    CAS  PubMed  Google Scholar 

  45. Arck P, Hansen PJ, Mulac Jericevic B, Piccinni MP, Szekeres-Bartho J. Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58(3):268–79.

    CAS  PubMed  Google Scholar 

  46. Astle S, Slater DM, Thornton S. The involvement of progesterone in the onset of human labour. Eur J Obstet Gynecol Reprod Biol. 2003;108(2):177–81.

    CAS  PubMed  Google Scholar 

  47. Avrech OM, Golan A, Weinraub Z, Bukovsky I, Caspi E. Mifepristone (RU486) alone or in combination with a prostaglandin analogue for termination of early pregnancy: a review. Fertil Steril. 1991;56(3):385–93.

    CAS  PubMed  Google Scholar 

  48. Fang X, Wong S, Mitchell BF. Effects of RU486 on estrogen, progesterone, oxytocin, and their receptors in the rat uterus during late gestation. Endocrinology. 1997;138(7):2763–8.

    CAS  PubMed  Google Scholar 

  49. Haluska GJ, Kaler CA, Cook MJ, Novy MJ. Prostaglandin production during spontaneous labor and after treatment with RU486 in pregnant rhesus macaques. Biol Reprod. 1994;51(4):760–5.

    CAS  PubMed  Google Scholar 

  50. Mesiano S, Welsh TN. Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol. 2007;18(3):321–31.

    CAS  PubMed  Google Scholar 

  51. Bernard A, Duffek L, Torok I, Kosa Z. Progesterone and oestradiol levels and cytoplasmic receptor concentrations in the human myometrium at term, before labour and during labour. Acta Physiol Hung. 1988;71(4):507–10.

    CAS  PubMed  Google Scholar 

  52. Rezapour M, Backstrom T, Lindblom B, Ulmsten U. Sex steroid receptors and human parturition. Obstet Gynecol. 1997;89(6):918–24.

    CAS  PubMed  Google Scholar 

  53. Conneely OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW. Reproductive functions of progesterone receptors. Recent Prog Horm Res. 2002;57:339–55.

    CAS  PubMed  Google Scholar 

  54. Giangrande PH, McDonnell DP. The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res. 1999;54:291–313.

    CAS  PubMed  Google Scholar 

  55. Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7(9):875–9.

    CAS  PubMed  Google Scholar 

  56. Merlino AA, Welsh TN, Tan H, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab. 2007;92(5):1927–33.

    CAS  PubMed  Google Scholar 

  57. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab. 2002;87(6):2924–30.

    CAS  PubMed  Google Scholar 

  58. Haluska GJ, Wells TR, Hirst JJ, Brenner RM, Sadowsky DW, Novy MJ. Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition. J Soc Gynecol Investig. 2002;9(3):125–36.

    CAS  PubMed  Google Scholar 

  59. Li X, Chen C, Luo H, van Velkinburgh JC, Ni B, Chang Q. Decreased DNA methylations at the progesterone receptor promoter A induce functional progesterone withdrawal in human parturition. Reprod Sci. 2014;21(7):898–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chai SY, Smith R, Fitter JT, et al. Increased progesterone receptor A expression in labouring human myometrium is associated with decreased promoter occupancy by the histone demethylase JARID1A. Mol Hum Reprod. 2014;20(5):442–53.

    CAS  PubMed  Google Scholar 

  61. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1(2):106–11.

    PubMed  Google Scholar 

  62. Chai SY, Smith R, Zakar T, Mitchell C, Madsen G. Term myometrium is characterized by increased activating epigenetic modifications at the progesterone receptor-A promoter. Mol Hum Reprod. 2012;18(8):401–9.

    CAS  PubMed  Google Scholar 

  63. Ng HH, Bird A. Histone deacetylases: silencers for hire. Trends Biochem Sci. 2000;25(3):121–6.

    CAS  PubMed  Google Scholar 

  64. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64(2):435–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ke W, Chen C, Luo H, et al. Histone deacetylase 1 regulates the expression of progesterone receptor A during human parturition by occupying the progesterone receptor A promoter. Reprod Sci. 2016;23(7):955–64.

    CAS  PubMed  Google Scholar 

  66. Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci U S A. 2003;100(16):9518–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ilicic M, Zakar T, Paul JW. Modulation of progesterone receptor isoform expression in pregnant human myometrium. Biomed Res Int. 2017;2017:1–17.

    Google Scholar 

  68. Karolczak-Bayatti M, Sweeney M, Cheng J, et al. Acetylation of heat shock protein 20 (Hsp20) regulates human myometrial activity. J Biol Chem. 2011;286(39):34346–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ingvarsdottir K, Edwards C, Lee MG, et al. Histone H3K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 2007;27(22):7856–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sims RJ, Millhouse S, Chen CF, et al. Recognition of trimethylated histone h3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 2007;28(4):665–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15(2):163–76.

    CAS  PubMed  Google Scholar 

  72. Kim H, Heo K, Kim JH, Kim K, Choi J, An WJ. Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem. 2009;284(30):19867–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stratmann A, Haendler B. The histone demethylase JARID1A regulates progesterone receptor expression. FEBS J. 2011;278(9):1458–69.

    CAS  PubMed  Google Scholar 

  74. Catchpole S, Spencer-Dene B, Hall D, et al. PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. Int J Oncol. 2011;38(5):1267–77.

    CAS  PubMed  Google Scholar 

  75. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab. 2012;97(5):E719–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Siiteri PK, Febres F, Clemens LE, Chang RJ, Gondos B, Stites D. Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant? Ann N Y Acad Sci. 1977;286:384–97.

    CAS  PubMed  Google Scholar 

  77. Madsen G, Zakar T, Ku CY, Sanborn BM, Smith R, Mesiano S. Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J Clin Endocrinol Metab. 2004;89(2):1010–3.

    CAS  PubMed  Google Scholar 

  78. Peters GA, Yi L, Skomorovska-Prokvolit Y, et al. Inflammatory stimuli increase progesterone receptor-A stability and transrepressive activity in myometrial cells. Endocrinology. 2017;158(1):158–69.

    CAS  PubMed  Google Scholar 

  79. Migale R, MacIntyre DA, Cacciatore S, et al. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med. 2016;14(1):1–17.

    Google Scholar 

  80. Filipovich Y, Klein J, Zhou Y, Hirsch E. Maternal and fetal roles in bacterially induced preterm labor in the mouse. Am J Obstet Gynecol. 2016;214(3):386 e381–9.

    Google Scholar 

  81. Hirsch E, Muhle R. Intrauterine bacterial inoculation induces labor in the mouse by mechanisms other than progesterone withdrawal. Biol Reprod. 2002;67(4):1337–41.

    CAS  PubMed  Google Scholar 

  82. Muhle RA, Pavlidis P, Grundy WN, Hirsch E. A high-throughput study of gene expression in preterm labor with a subtractive microarray approach. Am J Obstet Gynecol. 2001;185(3):716–24.

    CAS  PubMed  Google Scholar 

  83. Lee Y, Sooranna SR, Terzidou V, et al. Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes. J Cell Mol Med. 2012;16(10):2487–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chan YW, van den Berg HA, Moore JD, Quenby S, Blanks AM. Assessment of myometrial transcriptome changes associated with spontaneous human labour by high-throughput RNA-seq. Exp Physiol. 2014;99(3):510–24.

    CAS  PubMed  Google Scholar 

  85. Amini P, Michniuk D, Kuo K, et al. Human parturition involves phosphorylation of progesterone receptor-A at serine-345 in myometrial cells. Endocrinology. 2016;157(11):4434–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Amini P, Wilson R, Wang J, et al. Progesterone and cAMP synergize to inhibit responsiveness of myometrial cells to pro-inflammatory/pro-labor stimuli. Mol Cell Endocrinol. 2019;479:1–11.

    CAS  PubMed  Google Scholar 

  87. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A. 2010;107(48):20828–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A. 2012;109(19):7529–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nadeem L, Shynlova O, Matysiak-Zablocki E, Mesiano S, Dong X, Lye S. Molecular evidence of functional progesterone withdrawal in human myometrium. Nat Commun. 2016;7:11565–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. MacIntyre DA, Lee YS, Migale R, et al. Activator protein 1 is a key terminal mediator of inflammation-induced preterm labor in mice. FASEB J. 2014;28(5):2358–68.

    CAS  PubMed  Google Scholar 

  91. Lim R, Lappas M. Differential expression of AP-1 proteins in human myometrium after spontaneous term labour onset. Eur J Obstet Gynecol Reprod Biol. 2014;177:100–5.

    CAS  PubMed  Google Scholar 

  92. Nadeem L, Shynlova O, Mesiano S, Lye S. Progesterone via its type-A receptor promotes myometrial gap junction coupling. Sci Rep. 2017;7(1):13357–69.

    PubMed  PubMed Central  Google Scholar 

  93. Kota SK, Gayatri K, Jammula S, et al. Endocrinology of parturition. Indian J Endocrinol Metab. 2013;17(1):50–9.

    PubMed  PubMed Central  Google Scholar 

  94. Soloff MS, Fernstrom MA, Periyasamy S, Soloff S, Baldwin S, Wieder M. Regulation of oxytocin receptor concentration in rat uterine explants by estrogen and progesterone. Can J Biochem Cell Biol. 1983;61(7):625–30.

    CAS  PubMed  Google Scholar 

  95. Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology. 1993;133(1):284–90.

    CAS  PubMed  Google Scholar 

  96. Hertelendy F, Zakar T. Prostaglandins and the myometrium and cervix. Prostaglandins Leukot Essent Fat Acids. 2004;70(2):207–22.

    CAS  Google Scholar 

  97. Bale TL, Dorsa DM. Cloning, novel promoter sequence, and estrogen regulation of a rat oxytocin receptor gene. Endocrinology. 1997;138(3):1151–8.

    CAS  PubMed  Google Scholar 

  98. Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology. 1993;132(6):2380–6.

    CAS  PubMed  Google Scholar 

  99. Matsui K, Higashi K, Fukunaga K, Miyazaki K, Maeyama M, Miyamoto E. Hormone treatments and pregnancy alter myosin light chain kinase and calmodulin levels in rabbit myometrium. J Endocrinol. 1983;97(1):11–9.

    CAS  PubMed  Google Scholar 

  100. Windmoller R, Lye SJ, Challis JR. Estradiol modulation of ovine uterine activity. Can J Physiol Pharmacol. 1983;61(7):722–8.

    CAS  PubMed  Google Scholar 

  101. Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem. 2001;276(40):36869–72.

    CAS  Google Scholar 

  102. Hall JM, McDonnell DP. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv. 2005;5(6):343–57.

    PubMed  Google Scholar 

  103. Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev. 2001;81(4):1535–65.

    CAS  PubMed  Google Scholar 

  104. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Warner M, Nilsson S, Gustafsson JA. The estrogen receptor family. Curr Opin Obstet Gynecol. 1999;11(3):249–54.

    CAS  PubMed  Google Scholar 

  106. Dechering K, Boersma C, Mosselman S. Estrogen receptors alpha and beta: Two receptors of a kind? Curr Med Chem. 2000;7(5):561–76.

    CAS  PubMed  Google Scholar 

  107. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–30.

    CAS  PubMed  Google Scholar 

  108. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.

    CAS  PubMed  Google Scholar 

  109. Fang X, Wong S, Mitchell BF. Relationships among sex steroids, oxytocin, and their receptors in the rat uterus during late gestation and at parturition. Endocrinology. 1996;137(8):3213–9.

    CAS  PubMed  Google Scholar 

  110. Nathanielsz PW. Comparative studies on the initiation of labor. Eur J Obstet Gynecol Reprod Biol. 1998;78(2):127–32.

    CAS  PubMed  Google Scholar 

  111. Smith R, Smith JI, Shen XB, et al. Patterns of Plasma corticotropin-releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J Clin Endocrinol Metab. 2009;94(6):2066–74.

    CAS  PubMed  Google Scholar 

  112. Dehertogh R, Thomas K, Bietlot Y, Vanderheyden I, Ferin J. Plasma-levels of unconjugated estrone, estradiol and estriol and of Hcs throughout pregnancy in normal women. J Clin Endocrinol Metab. 1975;40(1):93–101.

    CAS  Google Scholar 

  113. Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology. 1999;140(12):5566–78.

    CAS  PubMed  Google Scholar 

  114. Paech K, Webb P, Kuiper GGJM, et al. Differential ligand activation of estrogen receptors ER alpha and ER beta at AP1 sites. Science. 1997;277(5331):1508–10.

    CAS  PubMed  Google Scholar 

  115. Katzenellenbogen BS. Mechanisms of action and cross-talk between estrogen receptor and progesterone receptor pathways. J Soc Gynecol Investig. 2000;7(1):S33–7.

    CAS  PubMed  Google Scholar 

  116. Katzenellenbogen BS, Nardulli AM, Read LD. Estrogen regulation of proliferation and hormonal modulation of estrogen and progesterone-receptor biosynthesis and degradation in target-cells. Mol Endocrinol Steroid Horm Action. 1990;322:201–11.

    CAS  Google Scholar 

  117. Welsh T, Johnson M, Yi L, et al. Estrogen receptor (ER) expression and function in the pregnant human myometrium: estradiol via ERalpha activates ERK1/2 signaling in term myometrium. J Endocrinol. 2012;212(2):227–38.

    CAS  PubMed  Google Scholar 

  118. Wu JJ, Geimonen E, Andersen J. Increased expression of estrogen receptor beta in human uterine smooth muscle at term. Eur J Endocrinol. 2000;142(1):92–9.

    CAS  PubMed  Google Scholar 

  119. Anamthathmakula P, Kyathanahalli C, Ingles J, Hassan SS, Condon JC, Jeyasuria P. Estrogen receptor alpha isoform ERdelta7 in myometrium modulates uterine quiescence during pregnancy. EBioMedicine. 2019;39:520–30.

    PubMed  Google Scholar 

  120. Maiti K, Paul JW, Read M, et al. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium. Endocrinology. 2011;152(6):2448–55.

    CAS  PubMed  Google Scholar 

  121. Paul J, Maiti K, Read M, et al. Phasic phosphorylation of caldesmon and ERK 1/2 during contractions in human myometrium. PLoS One. 2011;6(6):e21542.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Theobold GW. BA, Campbell J., Grange P.D. and Driscoll W.J. The use of posterior pituitary extracts in physiological amounts in obstetrics. Br Med J. 1984;2:123–7.

    Google Scholar 

  123. Fuchs AR, Dawood MY. Oxytocin release and uterine activation during parturition iin rabbits. Endocrinology. 1980;107(4):1117–26.

    CAS  PubMed  Google Scholar 

  124. Glatz TH, Weitzman RE, Eliot RJ, Klein AH, Nathanielsz PW, Fisher DA. Ovine maternal and fetal plasma oxytocin concentrations before and during parturition. Endocrinology. 1981;108(4):1328–32.

    CAS  PubMed  Google Scholar 

  125. Landgraf R, Schulz J, Eulenberger K, Wilhelm J. Plasma levels of oxytocin and vasopressin before, during and after parturition in cows. Exp Clin Endocrinol. 1983;81(3):321–8.

    CAS  PubMed  Google Scholar 

  126. Higuchi T, Tadokoro Y, Honda K, Negoro H. Detailed analysis of blood oxytocin levels during suckling and parturition in the rat. J Endocrinol. 1986;110(2):251–6.

    CAS  PubMed  Google Scholar 

  127. Currie WB, Gorewit RC, Michel FJ. Endocrine changes, with special emphasis on oestradiol-17 beta, prolactin and oxytocin, before and during labour and delivery in goats. J Reprod Fertil. 1988;82(1):299–308.

    CAS  PubMed  Google Scholar 

  128. Haluska GJ, Currie WB. Variation in plasma concentrations of oestradiol-17 beta and their relationship to those of progesterone, 13,14-dihydro-15-keto-prostaglandin F-2 alpha and oxytocin across pregnancy and at parturition in pony mares. J Reprod Fertil. 1988;84(2):635–46.

    CAS  PubMed  Google Scholar 

  129. Hirst JJ, Haluska GJ, Cook MJ, Novy MJ. Plasma oxytocin and nocturnal uterine activity: maternal but not fetal concentrations increase progressively during late pregnancy and delivery in rhesus monkeys. Am J Obstet Gynecol. 1993;169(2 Pt 1):415–22.

    CAS  PubMed  Google Scholar 

  130. Gilbert CLGJ, McGrath TJ. Pulsatile release of oxytocin during parturition in the pig: temporal relationship with fetal expulsion. J Physiol. 1994;475:129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fuchs AR, Romero R, Keefe D, Parra M, Oyarzun E, Behnke E. Oxytocin secretion and human parturition: pulse frequency and duration increase during spontaneous labor in women. Am J Obstet Gynecol. 1991;165(5 Pt 1):1515–23.

    CAS  PubMed  Google Scholar 

  132. Thornton S, Davison JM, Baylis PH. Plasma oxytocin during the first and second stages of spontaneous human labour. Acta Endocrinol. 1992;126(5):425–9.

    CAS  PubMed  Google Scholar 

  133. Alexandrova M, Soloff MS. Oxytocin receptors and parturition in the guinea pig. Biol Reprod. 1980;22(5):1106–11.

    CAS  PubMed  Google Scholar 

  134. Maggi M, Genazzani AD, Giannini S, et al. Vasopressin and oxytocin receptors in vagina, myometrium, and oviduct of rabbits. Endocrinology. 1988;122(6):2970–80.

    CAS  PubMed  Google Scholar 

  135. Maggi M, Peri A, Giannini S, Fantoni G, Guardabasso V, Serio M. Oxytocin and V1 vasopressin receptors in rabbit endometrium during pregnancy. J Reprod Fertil. 1991;91(2):575–81.

    CAS  PubMed  Google Scholar 

  136. Imamura T, Luedke CE, Vogt SK, Muglia LJ. Oxytocin modulates the onset of murine parturition by competing ovarian and uterine effects. Am J Phys Regul Integr Comp Phys. 2000;279(3):R1061–7.

    CAS  Google Scholar 

  137. Soloff MS, Alexandrova M, Fernstrom MJ. Oxytocin receptors: triggers for parturition and lactation? Science. 1979;204(4399):1313–5.

    CAS  PubMed  Google Scholar 

  138. Wathes DC, Smith HF, Leung ST, Stevenson KR, Meier S, Jenkin G. Oxytocin receptor development in ovine uterus and cervix throughout pregnancy and at parturition as determined by in situ hybridization analysis. J Reprod Fertil. 1996;106(1):23–31.

    CAS  PubMed  Google Scholar 

  139. Fuchs AR, Fuchs F, Husslein P, Soloff MS. Oxytocin receptors in the human uterus during pregnancy and parturition. Am J Obstet Gynecol. 1984;150(6):734–41.

    CAS  PubMed  Google Scholar 

  140. Fuchs AR, Fuchs F, Husslein P, Soloff MS, Fernstrom MJ. Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science. 1982;215(4538):1396–8.

    CAS  PubMed  Google Scholar 

  141. Kimura T, Takemura M, Nomura S, et al. Expression of oxytocin receptor in human pregnant myometrium. Endocrinology. 1996;137(2):780–5.

    CAS  PubMed  Google Scholar 

  142. Antonijevic IA, Douglas AJ, Dye S, Bicknell RJ, Leng G, Russell JA. Oxytocin antagonists delay the initiation of parturition and prolong its active phase in rats. J Endocrinol. 1995;145(1):97–103.

    CAS  PubMed  Google Scholar 

  143. Chan WY, Berezin I, Daniel EE, Russell KC, Hruby VJ. Effects of inactivation of oxytocin receptor and inhibition of prostaglandin synthesis on uterine oxytocin receptor and gap junction formation and labor in the rat. Can J Physiol Pharmacol. 1991;69(9):1262–7.

    CAS  PubMed  Google Scholar 

  144. Fejgin MD, Pak SC, Warnell C, Flouret G, Parsons MT, Wilson L Jr. Oxytocin antagonist inhibitory effect on the rat and baboon uterus may be overcome by prostaglandins. Am J Obstet Gynecol. 1994;171(4):1076–80.

    CAS  PubMed  Google Scholar 

  145. Honnebier MB, Figueroa JP, Rivier J, Vale W, Nathanielsz PW. Studies on the role of oxytocin in late pregnancy in the pregnant rhesus monkey: plasma concentrations of oxytocin in the maternal circulation throughout the 24-h day and the effect of the synthetic oxytocin antagonist [1-beta-Mpa(beta-(CH2)5)1,(Me(Tyr2, Orn8] oxytocin on spontaneous nocturnal myometrial contractions. J Dev Physiol. 1989;12(4):225-232.

  146. Hirst JJ, Haluska GJ, Cook MJ, Hess DL, Novy MJ. Comparison of plasma oxytocin and catecholamine concentrations with uterine activity in pregnant rhesus monkeys. J Clin Endocrinol Metab. 1991;73(4):804–10.

    CAS  PubMed  Google Scholar 

  147. Wilson L Jr, Parsons MT, Flouret G. Inhibition of spontaneous uterine contractions during the last trimester in pregnant baboons by an oxytocin antagonist. Am J Obstet Gynecol. 1990;163(6 Pt 1):1875–82.

    CAS  PubMed  Google Scholar 

  148. Akerlund M, Stromberg P, Hauksson A, et al. Inhibition of uterine contractions of premature labour with an oxytocin analogue. Results from a pilot study. Br J Obstet Gynaecol. 1987;94(11):1040–4.

    CAS  PubMed  Google Scholar 

  149. Goodwin TM, Paul R, Silver H, et al. The effect of the oxytocin antagonist atosiban on preterm uterine activity in the human. Am J Obstet Gynecol. 1994;170(2):474–8.

    CAS  PubMed  Google Scholar 

  150. Aalami-Harandi R, Karamali M, Moeini A. Induction of labor with titrated oral misoprostol solution versus oxytocin in term pregnancy: randomized controlled trial. Rev Bras Ginecol Obstet. 2013;35(2):60–5.

    PubMed  Google Scholar 

  151. Prevost M, Zelkowitz P, Tulandi T, et al. Oxytocin in pregnancy and the postpartum: relations to labor and its management. Front Public Health. 2014;2:1–9.

    PubMed  PubMed Central  Google Scholar 

  152. Page EW. The value of plasma pitocinase determinations in obstetrics. Am J Obstet Gynecol. 1946;52(6):1014–22.

    CAS  PubMed  Google Scholar 

  153. Mizutani STY. Oxytocinase: placental cysteine amino peptidase or placental leucine amino peptidase (PLAP)? Semin Reprod Endocrinol. 1992;10:146–53.

    Google Scholar 

  154. Burd JM, Davison J, Weightman DR, Baylis PH. Evaluation of enzyme inhibitors of pregnancy associated oxytocinase: application to the measurement of plasma immunoreactive oxytocin during human labour. Acta Endocrinol. 1987;114(3):458–64.

    CAS  PubMed  Google Scholar 

  155. Amico JA, Hempel J. An oxytocin precursor intermediate circulates in the plasma of humans and rhesus monkeys administered estrogen. Neuroendocrinology. 1990;51(4):437–43.

    CAS  PubMed  Google Scholar 

  156. Chard T. Fetal and maternal oxytocin in human parturition. Am J Perinatol. 1989;6(2):145–52.

    CAS  PubMed  Google Scholar 

  157. Dawood MY, Raghavan KS, Pociask C, Fuchs F. Oxytocin in human pregnancy and parturition. Obstet Gynecol. 1978;51(2):138–43.

    CAS  PubMed  Google Scholar 

  158. Fitzpatrick R. Blood concentration of oxytocin in labor. J Endocrinol. 1961;22:19–24.

    Google Scholar 

  159. Chibbar R, Miller FD, Mitchell BF. Synthesis of oxytocin in amnion, chorion, and decidua may influence the timing of human parturition. J Clin Invest. 1993;91(1):185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wathes D, Swann R. Is oxytocin an ovarian hormone? Nat Cell Biol. 1982;297:225–7.

    CAS  Google Scholar 

  161. Ivell R, Richter D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci U S A. 1984;81(7):2006–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Flint AP, Sheldrick EL. Evidence for a systemic role for ovarian oxytocin in luteal regression in sheep. J Reprod Fertil. 1983;67(1):215–25.

    CAS  PubMed  Google Scholar 

  163. Lefebvre DL, Giaid A, Bennett H, Lariviere R, Zingg HH. Oxytocin gene expression in rat uterus. Science. 1992;256(5063):1553–5.

    CAS  PubMed  Google Scholar 

  164. Lefebvre DL, Lariviere R, Zingg HH. Rat amnion: a novel site of oxytocin production. Biol Reprod. 1993;48(3):632–9.

    CAS  PubMed  Google Scholar 

  165. Busnelli M, Sauliere A, Manning M, Bouvier M, Gales C, Chini B. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem. 2012;287(6):3617–29.

    CAS  PubMed  Google Scholar 

  166. Gravati M, Busnelli M, Bulgheroni E, et al. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem. 2010;114(5):1424–35.

    CAS  PubMed  Google Scholar 

  167. Strakova Z, Soloff MS. Coupling of oxytocin receptor to G proteins in rat myometrium during labor: Gi receptor interaction. Am J Phys. 1997;272(5 Pt 1):E870–6.

    CAS  Google Scholar 

  168. Arthur P, Taggart MJ, Mitchell BF. Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization? Front Biosci. 2007;12:619–33.

    CAS  PubMed  Google Scholar 

  169. Fuchs AR, Husslein P, Fuchs F. Oxytocin and the initiation of human parturition. II. Stimulation of prostaglandin production in human decidua by oxytocin. Am J Obstet Gynecol. 1981;141(6):694–7.

    CAS  PubMed  Google Scholar 

  170. Passetto NZA, Piccione E, Lenti L, Pontieri G, Ticconi C. Influence of labor and oxytocin on in vitro leukotriene release by human fetal membranes and uterine decidua at term gestation. Am J Obstet Gynecol. 1988;166:1500–6.

    Google Scholar 

  171. Wilson T, Liggins GC, Whittaker DJ. Oxytocin stimulates the release of arachidonic acid and prostaglandin F2 alpha from human decidual cells. Prostaglandins. 1988;35(5):771–80.

    CAS  PubMed  Google Scholar 

  172. Fuchs AR, Rollyson MK, Meyer M, Fields MJ, Minix JM, Randel RD. Oxytocin induces prostaglandin F2 alpha release in pregnant cows: influence of gestational age and oxytocin receptor concentrations. Biol Reprod. 1996;54(3):647–53.

    CAS  PubMed  Google Scholar 

  173. Meier S, Lau TM, Jenkin G, Fairclough RJ. Oxytocin-induced prostaglandin F2 alpha release and endometrial oxytocin receptor concentrations throughout pregnancy in ewes. J Reprod Fertil. 1995;103(2):233–8.

    CAS  PubMed  Google Scholar 

  174. Kim SH, MacIntyre DA, Firmino Da Silva M, et al. Oxytocin activates NF-kappaB-mediated inflammatory pathways in human gestational tissues. Mol Cell Endocrinol. 2015;403:64–77.

    CAS  PubMed  Google Scholar 

  175. Pont JN, McArdle CA, Lopez BA. Oxytocin-stimulated NFAT transcriptional activation in human myometrial cells. Mol Endocrinol. 2012;26(10):1743–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim SH, MacIntyre DA, Hanyaloglu AC, et al. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(alphai) signalling. Mol Cell Endocrinol. 2016;420:11–23.

    CAS  PubMed  Google Scholar 

  177. Reinl EL, Goodwin ZA, Raghuraman N, et al. Novel Oxytocin Receptor Variants in Laboring Women Requiring High Doses of Oxytocin. Am J Obstet Gynecol. 2017;217(2):214.e211–4.

    Google Scholar 

  178. Menacker F, Martin JA. Expanded health data from the new birth certificate, 2005. Natl Vital Stat Rep. 2008;56(13):1–24.

    PubMed  Google Scholar 

  179. Frey HA, Tuuli MG, England SK, et al. Factors associated with higher oxytocin requirements in labor. J Matern Fetal Neonatal Med. 2015;28(13):1614–9.

    PubMed  Google Scholar 

  180. Bidgood KA, Steer PJ. A randomized control study of oxytocin augmentation of labour. 1. Obstetric outcome. Br J Obstet Gynaecol. 1987;94(6):512–7.

    CAS  PubMed  Google Scholar 

  181. Wei SQ, Luo ZC, Qi HP, Xu H, Fraser WD. High-dose vs low-dose oxytocin for labor augmentation: a systematic review. Am J Obstet Gynecol. 2010;203(4):296–304.

    CAS  PubMed  Google Scholar 

  182. Hauth JC, Hankins GD, Gilstrap LC 3rd, Strickland DM, Vance P. Uterine contraction pressures with oxytocin induction/augmentation. Obstet Gynecol. 1986;68(3):305–9.

    CAS  PubMed  Google Scholar 

  183. DeMott RK, Sandmire HF. The Green Bay cesarean section study. II. The physician factor as a determinant of cesarean birth rates for failed labor. Am J Obstet Gynecol. 1992;166(6 Pt 1):1799–806.

    CAS  PubMed  Google Scholar 

  184. Simpson KR, Knox GE. Oxytocin as a high-alert medication: implications for perinatal patient safety. MCN Am J Matern Child Nurs. 2009;34(1):8–15.

    PubMed  Google Scholar 

  185. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition-a review. Placenta. 2003;24(Suppl A):S33–46.

    PubMed  Google Scholar 

  186. Vilella F, Ramirez L, Berlanga O, et al. PGE2 and PGF2alpha concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab. 2013;98(10):4123–32.

    CAS  PubMed  Google Scholar 

  187. Elger W, Hasan SG. Studies on the mechanism of action of antifertile PG in animal models. Acta Physiol Hung. 1985;65(4):415–32.

    CAS  PubMed  Google Scholar 

  188. Elger W, Hasan SH, Friedreich E. “Uterine” and “luteal” effects of prostaglandins (PG) in rats and guinea pigs as potential abortifacient mechanisms. Acta Endocrinol Suppl (Copenh). 1973;173:46.

    CAS  Google Scholar 

  189. Sugimoto Y, Yamasaki A, Segi E, et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science. 1997;277(5326):681–3.

    CAS  PubMed  Google Scholar 

  190. Challis JR, Lye SJ, Gibb W. Prostaglandins and parturition. Ann N Y Acad Sci. 1997;828:254–67.

    CAS  PubMed  Google Scholar 

  191. Patel FA, Challis JR. Prostaglandins and uterine activity. Front Horm Res. 2001;27:31–56.

    CAS  PubMed  Google Scholar 

  192. Skinner KA, Challis JR. Changes in the synthesis and metabolism of prostaglandins by human fetal membranes and decidua at labor. Am J Obstet Gynecol. 1985;151(4):519–23.

    CAS  PubMed  Google Scholar 

  193. Falcone TLA. Placental synthesis of steroid hormones, vol. 2. Philadelphia: WB Saunders Co; 1994.

    Google Scholar 

  194. Olson DM, Skinner K, Challis JRG. Prostaglandin output in relation to parturition by cells dispersed from human intrauterine tissues. J Clin Endocrinol Metab. 1983;57(4):694–9.

    CAS  PubMed  Google Scholar 

  195. Embrey M. PGE compounds for induction of labour and abortion. Ann N Y Acad Sci. 1971;180:518–23.

    CAS  PubMed  Google Scholar 

  196. Embrey MP. Prostaglandins in human reproduction. Br Med J. 1981;283(6306):1563–6.

    CAS  Google Scholar 

  197. Jain JK, Mishell DR Jr. A comparison of intravaginal misoprostol with prostaglandin E2 for termination of second-trimester pregnancy. N Engl J Med. 1994;331(5):290–3.

    CAS  PubMed  Google Scholar 

  198. Robins J, Mann LI. Midtrimester pregnancy termination by intramuscular injection of a 15-methyl analogue of prostaglandin F2 alpha. Am J Obstet Gynecol. 1975;123(6):625–31.

    CAS  PubMed  Google Scholar 

  199. Coleman RA, Eglen RM, Jones RL, et al. Prostanoid and leukotriene receptors: a progress report from the IUPHAR working parties on classification and nomenclature. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:283–5.

    CAS  PubMed  Google Scholar 

  200. Negishi M, Sugimoto Y, Ichikawa A. Prostanoid receptors and their biological actions. Prog Lipid Res. 1993;32(4):417–34.

    CAS  PubMed  Google Scholar 

  201. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–90.

    CAS  PubMed  Google Scholar 

  202. Namba T, Sugimoto Y, Negishi M, et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature. 1993;365(6442):166–70.

    CAS  PubMed  Google Scholar 

  203. Kotani M, Tanaka I, Ogawa Y, et al. Multiple signal transduction pathways through two prostaglandin E receptor EP3 subtype isoforms expressed in human uterus. J Clin Endocrinol Metab. 2000;85(11):4315–22.

    CAS  PubMed  Google Scholar 

  204. Negishi M, Sugimoto Y, Ichikawa A. Prostaglandin E receptors. J Lipid Mediat Cell Signal. 1995;12(2-3):379–91.

    CAS  PubMed  Google Scholar 

  205. Lim H, Dey SK. Prostaglandin E2 receptor subtype EP2 gene expression in the mouse uterus coincides with differentiation of the luminal epithelium for implantation. Endocrinology. 1997;138(11):4599–606.

    CAS  PubMed  Google Scholar 

  206. Dong YL, Yallampalli C. Pregnancy and exogenous steroid treatments modulate the expression of relaxant EP(2) and contractile FP receptors in the rat uterus. Biol Reprod. 2000;62(3):533–9.

    CAS  PubMed  Google Scholar 

  207. Blesson CS, Buttner E, Masironi B, Sahlin L. Prostaglandin receptors EP and FP are regulated by estradiol and progesterone in the uterus of ovariectomized rats. Reprod Biol Endocrinol. 2012;10:3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Ilicic M, Butler T, Zakar T, Paul JW. The expression of genes involved in myometrial contractility changes during ex situ culture of pregnant human uterine smooth muscle tissue. J Smooth Muscle Res. 2017;53(0):73–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Smith GC, Wu WX, Nathanielsz PW. Effects of gestational age and labor on expression of prostanoid receptor genes in baboon uterus. Biol Reprod. 2001;64(4):1131–7.

    CAS  PubMed  Google Scholar 

  210. Grigsby PL, Sooranna SR, Adu-Amankwa B, et al. Regional expression of prostaglandin E2 and F2alpha receptors in human myometrium, amnion, and choriodecidua with advancing gestation and labor. Biol Reprod. 2006;75(2):297–305.

    CAS  PubMed  Google Scholar 

  211. Olson DM. The role of prostaglandins in the initiation of parturition. Best Pract Res Clin Obstet Gynaecol. 2003;17(5):717–30.

    PubMed  Google Scholar 

  212. Arulkumaran S, Kandola MK, Hoffman B, Hanyaloglu AC, Johnson MR, Bennett PR. The roles of prostaglandin EP 1 and 3 receptors in the control of human myometrial contractility. J Clin Endocrinol Metab. 2012;97(2):489–98.

    CAS  PubMed  Google Scholar 

  213. Hinton AC, Grigsby PL, Pitzer BA, et al. Hormonal regulation of prostaglandin E2 receptors: localization and expression in rat cervical tissue. Reprod Sci. 2010;17(2):136–46.

    CAS  PubMed  Google Scholar 

  214. Gu G, Gao Q, Yuan X, Huang L, Ge L. Immunolocalization of adipocytes and prostaglandin E2 and its four receptor proteins EP1, EP2, EP3, and EP4 in the caprine cervix during spontaneous term labor. Biol Reprod. 2012;86(5):159 151-110.

    PubMed  Google Scholar 

  215. Yellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod. 2008;78(3):438–44.

    CAS  PubMed  Google Scholar 

  216. Schmitz T, Levine BA, Nathanielsz PW. Localization and steroid regulation of prostaglandin E2 receptor protein expression in ovine cervix. Reproduction. 2006;131(4):743–50.

    CAS  PubMed  Google Scholar 

  217. Blesson CSRN, Stephansson O, Masironi B, Reinert S, Vladic Stjernholm Y, et al. Expression and localization of prostaglandin receptors and stromal factors in human cervix - variations in pregnant and non-pregnant states. Open J Mol Integr Physiol. 2013;3:147–57.

    Google Scholar 

  218. Shepherd JH, Knuppel RA. The role of prostaglandins in ripening the cervix and inducing labor. Clin Perinatol. 1981;8(1):49–62.

    CAS  PubMed  Google Scholar 

  219. Yount SM, Lassiter N. The pharmacology of prostaglandins for induction of labor. J Midwifery Womens Health. 2013;58(2):133–44.

    PubMed  Google Scholar 

  220. Kelly AJ, Malik S, Smith L, Kavanagh J, Thomas J. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev. 2009;4:CD003101.

    Google Scholar 

  221. Boulvain M, Kelly A, Irion O. Intracervical prostaglandins for induction of labour. Cochrane Database Syst Rev. 2008;1:CD006971.

    Google Scholar 

  222. Milne SA, Henderson TA, Kelly RW, Saunders PT, Baird DT, Critchley HO. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J Clin Endocrinol Metab. 2005;90(7):4315–21.

    CAS  PubMed  Google Scholar 

  223. Goldman S, Weiss A, Almalah I, Shalev E. Progesterone receptor expression in human decidua and fetal membranes before and after contractions: possible mechanism for functional progesterone withdrawal. Mol Hum Reprod. 2005;11(4):269–77.

    CAS  PubMed  Google Scholar 

  224. Welsh TN, Hirst JJ, Palliser H, Zakar T. Progesterone receptor expression declines in the guinea pig uterus during functional progesterone withdrawal and in response to prostaglandins. PLoS One. 2014;9(8):e105253.

    PubMed  PubMed Central  Google Scholar 

  225. Palliser HK, Zakar T, Symonds IM, Hirst JJ. Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies. Reprod Sci. 2010;17(8):776–82.

    CAS  PubMed  Google Scholar 

  226. Rodriguez HA, Kass L, Varayoud J, et al. Collagen remodelling in the guinea-pig uterine cervix at term is associated with a decrease in progesterone receptor expression. Mol Hum Reprod. 2003;9(12):807–13.

    CAS  PubMed  Google Scholar 

  227. Nnamani MC, Plaza S, Romero R, Wagner GP. Evidence for independent evolution of functional progesterone withdrawal in primates and guinea pigs. Evol Med Public Health. 2013;2013(1):273–88.

    PubMed  PubMed Central  Google Scholar 

  228. Jeyasuria P, Wetzel J, Bradley M, Subedi K, Condon JC. Progesterone-regulated caspase 3 action in the mouse may play a role in uterine quiescence during pregnancy through fragmentation of uterine myocyte contractile proteins. Biol Reprod. 2009;80(5):928–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994;269(49):30761–4.

    CAS  PubMed  Google Scholar 

  230. Supinski GS, Callahan LA. Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol (1985). 2006;100(6):1770–7.

    CAS  Google Scholar 

  231. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002;99(9):6252–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Narula J, Haider N, Arbustini E, Chandrashekhar Y. Mechanisms of disease: apoptosis in heart failure-seeing hope in death. Nat Clin Pract Cardiovasc Med. 2006;3(12):681–8.

    CAS  PubMed  Google Scholar 

  233. Shynlova O, Oldenhof A, Dorogin A, et al. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74(5):839–49.

    CAS  PubMed  Google Scholar 

  234. Jeyasuria P, Subedi K, Suresh A, Condon JC. Elevated levels of uterine anti-apoptotic signaling may activate NFKB and potentially confer resistance to caspase 3-mediated apoptotic cell death during pregnancy in mice. Biol Reprod. 2011;85(2):417–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Suresh A, Subedi K, Kyathanahalli C, Jeyasuria P, Condon JC. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus. PLoS One. 2013;8(9):e75152–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Kyathanahalli C, Organ K, Moreci RS, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112(45):14090–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Semin Cell Dev Biol. 2007;18(3):332–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Anwer K, Oberti C, Perez GJ, et al. Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Phys. 1993;265(4 Pt 1):C976–85.

    CAS  Google Scholar 

  239. Perez GJ, Toro L, Erulkar SD, Stefani E. Characterization of large-conductance, calcium-activated potassium channels from human myometrium. Am J Obstet Gynecol. 1993;168(2):652–60.

    CAS  PubMed  Google Scholar 

  240. Knock GA, Smirnov SV, Aaronson PI. Voltage-gated K+ currents in freshly isolated myocytes of the pregnant human myometrium. J Physiol. 1999;518(Pt 3):769–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Knock GA, Tribe RM, Hassoni AA, Aaronson PI. Modulation of potassium current characteristics in human myometrial smooth muscle by 17beta-estradiol and progesterone. Biol Reprod. 2001;64(5):1526–34.

    CAS  PubMed  Google Scholar 

  242. Okawa T, Vedernikov YP, Saade GR, et al. Roles of potassium channels and nitric oxide in modulation of uterine contractions in rat pregnancy. Am J Obstet Gynecol. 1999;181(3):649–55.

    CAS  PubMed  Google Scholar 

  243. Modzelewska B, Sipowicz MA, Saavedra JE, Keefer LK, Kostrzewska A. Involvement of K + ATP channels in nitric oxide-induced inhibition of spontaneous contractile activity of the nonpregnant human myometrium. Biochem Biophys Res Commun. 1998;253(3):653–7.

    CAS  PubMed  Google Scholar 

  244. Khan RN, Smith SK, Morrison JJ, Ashford ML. Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes. Am J Phys. 1997;273(5 Pt 1):C1721–31.

    CAS  Google Scholar 

  245. Moynihan AT, Smith TJ, Morrison JJ. The relaxant effect of nifedipine in human uterine smooth muscle and the BK(Ca) channel. Am J Obstet Gynecol. 2008;198(2):237 e231–8.

    Google Scholar 

  246. Gao L, Cong B, Zhang L, Ni X. Expression of the calcium-activated potassium channel in upper and lower segment human myometrium during pregnancy and parturition. Reprod Biol Endocrinol. 2009;7:27.

    PubMed  PubMed Central  Google Scholar 

  247. Matharoo-Ball B, Ashford ML, Arulkumaran S, Khan RN. Down-regulation of the alpha- and beta-subunits of the calcium-activated potassium channel in human myometrium with parturition. Biol Reprod. 2003;68(6):2135–41.

    CAS  PubMed  Google Scholar 

  248. Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda). 2009;24:26–35.

    CAS  Google Scholar 

  249. Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L. MaxiK channel partners: physiological impact. J Physiol. 2006;570(Pt 1):65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Singh H, Lu R, Bopassa JC, Meredith AL, Stefani E, Toro L. MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A. 2013;110(26):10836–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Singh H, Stefani E, Toro L. Intracellular BK(Ca) (iBK(Ca)) channels. J Physiol. 2012;590(23):5937–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E. MaxiK channel and cell signalling. Pflugers Arch. 2014;466(5):875–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Wakle-Prabagaran M, Lorca RA, Ma X, et al. BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells. Proc Natl Acad Sci U S A. 2016;113(16):E2335–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 2012;92(3):1393–478.

    CAS  PubMed  Google Scholar 

  255. Ohya S, Asakura K, Muraki K, Watanabe M, Imaizumi Y. Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2002;282(2):G277–87.

    CAS  PubMed  Google Scholar 

  256. Ohya S, Horowitz B, Greenwood IA. Functional and molecular identification of ERG channels in murine portal vein myocytes. Am J Phys Cell Physiol. 2002;283(3):C866–77.

    CAS  Google Scholar 

  257. Yeung SY, Greenwood IA. Pharmacological and biophysical isolation of K+ currents encoded by ether-a-go-go-related genes in murine hepatic portal vein smooth muscle cells. Am J Phys Cell Physiol. 2007;292(1):C468–76.

    CAS  Google Scholar 

  258. Akbarali HI, Thatte H, He XD, Giles WR, Goyal RK. Role of HERG-like K(+) currents in opossum esophageal circular smooth muscle. Am J Phys. 1999;277(6 Pt 1):C1284–90.

    CAS  Google Scholar 

  259. Parr E, Pozo MJ, Horowitz B, Nelson MT, Mawe GM. ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2003;284(3):G392–8.

    CAS  PubMed  Google Scholar 

  260. Mewe M, Wulfsen I, Schuster AM, et al. Erg K+ channels modulate contractile activity in the bovine epididymal duct. Am J Phys Regul Integr Comp Phys. 2008;294(3):R895–904.

    CAS  Google Scholar 

  261. Farrelly AM, Ro S, Callaghan BP, et al. Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol. 2003;284(6):G883–95.

    CAS  PubMed  Google Scholar 

  262. Lillich JD, Rakestraw PC, Roussel AJ, Finley MR, Ganta S, Freeman LC. Expression of the ether-a-go-go (ERG) potassium channel in smooth muscle of the equine gastrointestinal tract and influence on activity of jejunal smooth muscle. Am J Vet Res. 2003;64(3):267–72.

    CAS  PubMed  Google Scholar 

  263. Aaronson PI, Sarwar U, Gin S, et al. A role for voltage-gated, but not Ca2 + -activated, K+ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. Br J Pharmacol. 2006;147(7):815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Greenwood IA, Yeung SY, Tribe RM, Ohya S. Loss of functional K+ channels encoded by ether-a-go-go-related genes in mouse myometrium prior to labour onset. J Physiol. 2009;587(Pt 10):2313–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Parkington HC, Tonta MA, Brennecke SP, Coleman HA. Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am J Obstet Gynecol. 1999;181(6):1445–51.

    CAS  PubMed  Google Scholar 

  266. Parkington HC, Stevenson J, Tonta MA, et al. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat Commun. 2014;5:1–8.

    Google Scholar 

  267. Smith R, Imtiaz M, Banney D, Paul JW, Young RC. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am J Obstet Gynecol. 2015;213(2):181–5.

    PubMed  Google Scholar 

  268. Higgins CA, Martin W, Anderson L, et al. Maternal obesity and its relationship with spontaneous and oxytocin-induced contractility of human myometrium in vitro. Reprod Sci. 2010;17(2):177–85.

    CAS  PubMed  Google Scholar 

  269. Jie Z, Kendrick A, Quenby S, Wray S. Contractility and calcium signaling of human myometrium are profoundly affected by cholesterol manipulation: implications for labor? Reprod Sci. 2007;14(5):456–66.

    Google Scholar 

  270. Fyfe EM, Anderson NH, North RA, et al. Risk of first-stage and second-stage cesarean delivery by maternal body mass index among nulliparous women in labor at term. Obstet Gynecol. 2011;117(6):1315–22.

    PubMed  Google Scholar 

  271. Paul JW, Ilicic M, Zakar T, Smith R. Expression of KCNH2 (hERG1) and KCNE2 correlates with expression of key myometrial genes in term pregnant human myometrium. J Hum Endocrinol. 2017;2(008):1–7.

    Google Scholar 

  272. Curley M, Cairns MT, Friel AM, McMeel OM, Morrison JJ, Smith TJ. Expression of mRNA transcripts for ATP-sensitive potassium channels in human myometrium. Mol Hum Reprod. 2002;8(10):941–5.

    CAS  PubMed  Google Scholar 

  273. Longo M, Jain V, Vedernikov YP, Hankins GD, Garfield RE, Saade GR. Effects of L-type Ca(2+)-channel blockade, K(+)(ATP)-channel opening and nitric oxide on human uterine contractility in relation to gestational age and labour. Mol Hum Reprod. 2003;9(3):159–64.

    CAS  PubMed  Google Scholar 

  274. Xu C, You X, Gao L, et al. Expression of ATP-sensitive potassium channels in human pregnant myometrium. Reprod Biol Endocrinol. 2011;9:35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Du Q, Jovanovic S, Tulic L, et al. KATP channels are up-regulated with increasing age in human myometrium. Mech Ageing Dev. 2013;134(3-4):98–102.

    CAS  PubMed  Google Scholar 

  276. Heffner LJ, Elkin E, Fretts RC. Impact of labor induction, gestational age, and maternal age on cesarean delivery rates. Obstet Gynecol. 2003;102(2):287–93.

    PubMed  Google Scholar 

  277. Zasloff E, Schytt E, Waldenstrom U. First time mothers’ pregnancy and birth experiences varying by age. Acta Obstet Gynecol Scand. 2007;86(11):1328–36.

    PubMed  Google Scholar 

  278. Kim JY, Wu WH, Jun JH, Sohn J, Seo YS. Effects of corticotropin-releasing hormone on the expression of adenosine triphosphate-sensitive potassium channels (Kir6.1/SUR2B) in human term pregnant myometrium. Obstet Gynecol Sci. 2018;61(1):14–22.

    PubMed  Google Scholar 

  279. Bond CT, Sprengel R, Bissonnette JM, et al. Respiration and parturition affected by conditional overexpression of the Ca2 + -activated K+ channel subunit, SK3. Science. 2000;289(5486):1942–6.

    CAS  PubMed  Google Scholar 

  280. Brown A, Cornwell T, Korniyenko I, et al. Myometrial expression of small conductance Ca2 + -activated K+ channels depresses phasic uterine contraction. Am J Phys Cell Physiol. 2007;292(2):C832–40.

    CAS  Google Scholar 

  281. Mazzone J, Buxton IL. Changes in small conductance potassium channel expression in human myometrium during pregnancy measured by RT-PCR. Proc West Pharmacol Soc. 2003;46:74–7.

    CAS  PubMed  Google Scholar 

  282. Modzelewska B, Kostrzewska A, Sipowicz M, Kleszczewski T, Batra S. Apamin inhibits NO-induced relaxation of the spontaneous contractile activity of the myometrium from non-pregnant women. Reprod Biol Endocrinol. 2003;1:1–8.

    Google Scholar 

  283. Modzelewska B, Kleszczewski T, Kostrzewska A. The effect of a selective inhibition of potassium channels on the relaxation induced by nitric oxide in the human pregnant myometrium. Cell Mol Biol Lett. 2003;8(1):69–75.

    CAS  PubMed  Google Scholar 

  284. Rosenbaum ST, Svalo J, Nielsen K, Larsen T, Jorgensen JC, Bouchelouche P. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium. J Cell Mol Med. 2012;16(12):3001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Mazzone JN, Kaiser RA, Buxton IL. Calcium-activated potassium channel expression in human myometrium: effect of pregnancy. Proc West Pharmacol Soc. 2002;45:184–6.

    CAS  PubMed  Google Scholar 

  286. Pierce SL, England SK. SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am J Physiol Endocrinol Metab. 2010;299(4):E640–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Rahbek M, Nazemi S, Odum L, et al. Expression of the small conductance Ca(2)(+)-activated potassium channel subtype 3 (SK3) in rat uterus after stimulation with 17beta-estradiol. PLoS One. 2014;9(2):e87652–60.

    PubMed  PubMed Central  Google Scholar 

  288. Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 2005;118(Pt 11):2435–40.

    CAS  PubMed  Google Scholar 

  289. Benfenati V, Caprini M, Dovizio M, et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A. 2011;108(6):2563–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Benham CD, Gunthorpe MJ, Davis JB. TRPV channels as temperature sensors. Cell Calcium. 2003;33(5-6):479–87.

    CAS  PubMed  Google Scholar 

  291. Singh V, Ram M, Kandasamy K, et al. Molecular and functional characterization of TRPV4 channels in pregnant and nonpregnant mouse uterus. Life Sci. 2015;122:51–8.

    CAS  PubMed  Google Scholar 

  292. Ying L, Becard M, Lyell D, et al. The transient receptor potential vanilloid 4 channel modulates uterine tone during pregnancy. Sci Transl Med. 2015;7(319):319ra204–16.

    PubMed  Google Scholar 

  293. Reinl EL, Cabeza R, Gregory IA, Cahill AG, England SK. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women. Mol Hum Reprod. 2015;21(10):816–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Ferreira JJ, Butler A, Stewart R, et al. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na + -activated K+ channel, Slo2.1. J Physiol-London. 2019;597(1):137–49.

    CAS  PubMed  Google Scholar 

  295. Li H, Yu Y, Shi Y, et al. HoxA13 stimulates myometrial cells to secrete IL-1beta and enhance the expression of contraction-associated proteins. Endocrinology. 2016;157(5):2129–39.

    CAS  PubMed  Google Scholar 

  296. Liu L, Li H, Dargahi D, et al. HoxA13 Regulates phenotype regionalization of human pregnant myometrium. J Clin Endocrinol Metab. 2015;100(12):E1512–22.

    PubMed  Google Scholar 

  297. Li Y, Li H, Xie N, et al. HoxA10 and HoxA11 regulate the expression of contraction-associated proteins and contribute to regionalized myometrium phenotypes in women. Reprod Sci. 2018;25(1):44–50.

    CAS  PubMed  Google Scholar 

  298. Senior J, Sangha R, Baxter GS, Marshall K, Clayton JK. In vitro characterization of prostanoid FP-, DP-, IP- and TP-receptors on the non-pregnant human myometrium. Br J Pharmacol. 1992;107(1):215–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Fetalvero KM, Zhang P, Shyu M, et al. Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition. J Clin Invest. 2008;118(12):3966–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Bentley JK, Chen Q, Hong JY, et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014;134(6):1433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Paul J, Hua S, Smith R. A targeted drug delivery system for the uterus. Reprod Sci. 2015;22:57a.

    Google Scholar 

  302. Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol. 2016;216(3):283.e201–14.

    Google Scholar 

  303. Refuerzo JS, Leonard F, Bulayeva N, et al. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript development. MI wrote the manuscript. TZ and JWP edited the manuscript. Figures by JWP and MI. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jonathan W. Paul.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilicic, M., Zakar, T. & Paul, J.W. The Regulation of Uterine Function During Parturition: an Update and Recent Advances. Reprod. Sci. 27, 3–28 (2020). https://doi.org/10.1007/s43032-019-00001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00001-y

Keywords

Navigation