Skip to main content
Log in

Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster (Crassostrea gigas)

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix–loop–helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

RNAseq data have been deposited with GenBank under BioProject PRJNA553079. The datasets used and analyzed during the current study are also available from the corresponding author upon reasonable request.

References

  • Adamo S (2008) Norepinephrine and octopamine: linking stress and immune function across phyla. Invertebr Surviv J 5:12–19

    Google Scholar 

  • Backman TWH, Girke T (2016) systemPipeR: NGS workflow and report generation environment. BMC Bioinform 17:388

    Article  Google Scholar 

  • Bauknecht P, Jékely G (2017) Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 15:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonar DB, Coon SL, Walch M, Weiner RM, Fitt W (1990) Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull Mar Sci 46:484–498

    Google Scholar 

  • Boyle MJ, Yamaguchi E, Seaver EC (2014) Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DD, Cai LQ (2007) Amphibian metamorphosis. Dev Biol 306:20–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1-21.29.9

    Article  PubMed  Google Scholar 

  • Cannuel R, Beninger PG (2006) Gill development, functional and evolutionary implications in the Pacific oyster Crassostrea gigas (Bivalvia: Ostreidae). Mar Biol 149:547–563

    Article  Google Scholar 

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier S, Martin A, Leclere L, Amiel A, Houliston E (2006) Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. Dev Genes Evol 216:709–720

    Article  CAS  PubMed  Google Scholar 

  • Coon SL, Bonar DB (1987) Pharmacological evidence that alpha1-adrenoceptors mediate metamorphosis of the pacific oyster, Crassostrea gigas. Neuroscience 23:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Coon SL, Bonar DB, Weiner RM (1986) Chemical production of cultchless oyster spat using epinephrine and norepinephrine. Aquaculture 58:255–262

    Article  CAS  Google Scholar 

  • Davidson EH, Peterson KJ, Cameron RA (1995) Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Foulon V, Boudry P, Artigaud S, Guerard F, Hellio C (2019) In silico analysis of Pacific oyster (Crassostrea gigas) transcriptome over developmental stages reveals candidate genes for larval settlement. Int J Mol Sci 20:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ (2014) The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs J, Martindale MQ, Hejnol A (2011) Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. EvoDevo 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R (2023) The monoaminergic system is a bilaterian innovation. Nat Commun 14:3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadfield MG (2000) Why and how marine-invertebrate larvae metamorphose so fast. Semin Cell Dev Biol 11:437–443

    Article  CAS  PubMed  Google Scholar 

  • Haley BA, Hales B, Brunner EL, Kovalchik K, Waldbusser GG (2018) Mechanisms to explain the elemental composition of the initial aragonite shell of larval oysters. Geochem Geophys Geosyst 19:1064–1079

    Article  CAS  Google Scholar 

  • Hedgecock D, Gaffney PM, Goulletquer P, Guo X, Reece K, Warr GW (2005) The case for sequencing the Pacific oyster genome. J Shellfish Res 24:429–441

    Article  Google Scholar 

  • Heyland A, Moroz LL (2006) Signaling mechanisms underlying metamorphic transitions in animals. Integr Comp Biol 46:743

    Article  CAS  PubMed  Google Scholar 

  • Heyland A, Price DA, Bodnarova-buganova M, Moroz LL (2006) Thyroid hormone metabolism and peroxidase function in two non-chordate animals. J Exp Zool 306B:551–566

    Article  CAS  Google Scholar 

  • Hill RJ, Billas IML, Bonneton F, Graham LD, Lawrence MC (2013) Ecdysone receptors: from the Ashburner model to structural biology. Annu Rev Entomol 58:251–271

    Article  CAS  PubMed  Google Scholar 

  • Hiripi L, Vehovszky A, Juhos S, Elekes K (1998) An octopaminergic system in the CNS of the snails, Lymnaea stagnalis and Helix pomatia. Philos Trans R Soc Lond B 353:1621–1629

    Article  CAS  Google Scholar 

  • Huang W, Xu F, Qu T, Zhang R, Li L, Que H, Zhang G (2015) Identification of thyroid hormones and functional characterization of thyroid hormone receptor in the Pacific oyster Crassostrea gigas provide insight into evolution of the thyroid hormone system. PLoS ONE 10:e0144991

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P, Xu F, Huang B, Li Y, Li L, Zhang G (2016) Molecular characterization and functional analysis of a putative octopamine/tyramine receptor during the developmental stages of the Pacific oyster, Crassostrea gigas. PLoS ONE 11:e0168574

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Cao Y, Zheng Z, Liu M, Guo X (2019) Massive expansion and diversity of nicotinic acetylcholine receptors in lophotrochozoans. BMC Genomics 20:937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce A, Vogeler S (2018) Molluscan bivalve settlement and metamorphosis: neuroendocrine inducers and morphogenetic responses. Aquaculture 487:64–82

    Article  CAS  Google Scholar 

  • Kassambara A, Mundt F (2020) factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafont R, Koolman J (2009) Diversity of ecdysteroids in animal species. In: Smagghe G (ed) Ecdysone: structures and functions. Springer Netherlands, Dordrecht, pp 47–71

    Chapter  Google Scholar 

  • Laguerre M, Veenstra JA (2010) Ecdysone receptor homologs from mollusks, leeches and a polychaete worm. FEBS Lett 584:4458–4462

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HJ, Li Q, Yu H, Du SJ (2019) Developmental dynamics of myogenesis in Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 227:21–30

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai ST, Steel CGH, Saleuddin ASM (2001) Partial characterization of the secretory material from the dorsal bodies in the snail Helisoma duryi (Mollusca : Pulmonata), and its effects on reproduction. Invertebr Biol 120:149–161

    Article  Google Scholar 

  • Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, Bean TP, Houston RD (2021) A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. Gigascience 10:giab020

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson KJ, Cameron RA, Davidson EH (2000) Bilaterian origins: significance of new experimental observations. Dev Biol 219:1–17

    Article  CAS  PubMed  Google Scholar 

  • Raff RA (2008) Origins of the other metazoan body plans: the evolution of larval forms. Philos Trans R Soc Lond B Biol Sci 363:1473–1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160-165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romer F (1979) Ecdysteroids in snails. Naturwissenschaften 66:471–472

    Article  CAS  Google Scholar 

  • Shi YB, Matsuura K, Fujimoto K, Wen L, Fu LZ (2012) Thyroid hormone receptor actions on transcription in amphibia: the roles of histone modification and chromatin disruption. Cell Biosci 2:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavotinek AM, Biesecker LG (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet 17:528–535

    Article  CAS  PubMed  Google Scholar 

  • Sly BJ, Snoke MS, Raff RA (2003) Who came first-larvae or adults? Origins of bilaterian metazoan larvae. Int J Dev Biol 47:623–632

    PubMed  Google Scholar 

  • Stenzel H (1963) Aragonite and calcite as constituents of adult oyster shells. Science 142:232–233

    Article  CAS  PubMed  Google Scholar 

  • Stenzel HB (1964) Oysters: composition of the larval shell. Science 145:155–156

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  CAS  PubMed  Google Scholar 

  • Treccani L, Mann K, Heinemann F, Fritz M (2006) Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J 91:2601–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62

    Article  CAS  PubMed  Google Scholar 

  • Vogeler S, Carboni S, Li X, Ireland JH, Miller-Ezzy P, Joyce A (2021) Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 469:144–159

    Article  CAS  PubMed  Google Scholar 

  • Whitehead DL, Sellheyer K (1982) The Identification of ecdysterone (20-hydroxyecdysone) in 3 species of mollusks (Gastropoda, Pulmonata). Experientia 38:1249–1251

    Article  CAS  Google Scholar 

  • Xu F, Domazet-Lošo T, Fan D, Dunwell TL, Li L, Fang X, Zhang G (2016) High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans. Sci Rep 6:34664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Marlétaz F, Gavriouchkina D, Liu X, Sauka-Spengler T, Zhang G, Holland PWH (2021) Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 12:3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Xu F, Liu J, Que H, Li L, Zhang G (2014) Phylogeny of forkhead genes in three spiralians and their expression in Pacific oyster Crassostrea gigas. Chin J Oceanol Limnol 32:1207–1223

    Article  CAS  Google Scholar 

  • Yu J-K, Mazet F, Chen Y-T, Huang S-W, Jung K-C, Shimeld SM (2008) The Fox genes of Branchiostoma floridae. Dev Genes Evol 218:629–638

    Article  CAS  PubMed  Google Scholar 

  • Yu GC, Wang LG, Han YY, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang L-G, He Q-Y (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383

    Article  CAS  PubMed  Google Scholar 

  • Zeng D, Guo X (2022) Mantle transcriptome provides insights into biomineralization and growth regulation in the Eastern oyster (Crassostrea virginica). Mar Biotechnol 24:82–96

    Article  CAS  Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhao XM, Qin ZY, Liu WM, Liu XJ, Moussian B, Ma EB, Li S, Zhang JZ (2018) Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochem Mol Biol 92:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zhu A, Ibrahim JG, Love MI (2018) Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35:2084–2092

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Qingdao Frontier Ocean Seed Company Ltd for providing the facility for culturing oyster larvae. We thank Wen Huang for his assistance during the oyster treatment experiment. Most of the computations were supported by the Oceanographic Data Center, IOCAS. We acknowledge financial support from the Science & Technology Innovation Project of Laoshan Laboratory (LSKJ202203001), the Key Research and Development Program of Shandong (2022LZGC015), and the Taishan Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

FX conceived and designed the study. FX and SD conducted experiments. FX and DG conducted data analysis. GZ contributed to oyster experiments and analysis. FX wrote the paper. All authors approved the final manuscript.

Corresponding author

Correspondence to Fei Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Animal and human rights statement

This article does not contain any studies performed with human and vertebrate animals.

Additional information

Edited by Jiamei Li.

Special Topic: EvoDevo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 4393 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Deng, S., Gavriouchkina, D. et al. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster (Crassostrea gigas). Mar Life Sci Technol 5, 467–477 (2023). https://doi.org/10.1007/s42995-023-00204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-023-00204-y

Keywords

Navigation