Skip to main content

Advertisement

Log in

Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001T, which originated from Permian ground water

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, Permianibacter aggregans HW001T, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001T was shown to be the representative strain of a novel family, classified as ‘Permianibacteraceae’. The results of molecular dating suggested that the strain HW001T diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001T. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001T was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of P. aggregans to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001T to the changing ancient oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The genome sequence has been submitted to the GenBank database under BioProject PRJNA526813 and accession number CP037953.

References

  • Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bein A, Dutton AR (1993) Origin, distribution, and movement of brine in the Permian Basin (USA): a model for displacement of connate brine. Geol Soc Am Bull 105:695–707

    Article  CAS  Google Scholar 

  • Bertelli C, Laird MR, Williams KP, Group SFURC, Lau BY, Hoad G, Winsor GL, Brinkman FS (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  Google Scholar 

  • Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Dong Z, Han X, Wang H, Jiang L, Sun J, Yang Y, Ma T, Shao C, Wang X, Chen Z, Fang W, Freitag NE, Huang H, Song H (2017) Thioredoxin A is essential for motility and contributes to host infection of Listeria monocytogenes via redox interactions. Front Cell Infect Microbiol 7:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew SC, Yang L (2016) Biofilms. In: Caballero B, Finglas P, Toldrá F (eds) Encyclopedia of food and health. Elsevier, Oxford, pp 407–415

    Chapter  Google Scholar 

  • Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csűös M (2010) Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26:1910–1912

    Article  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA, Alm EJ (2011) Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93

    Article  CAS  PubMed  Google Scholar 

  • Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Wilson D (2015) ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 11:e1004041

    Article  PubMed  PubMed Central  Google Scholar 

  • Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N (2022) The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 50:D571–D577

    Article  CAS  PubMed  Google Scholar 

  • Emms DM, Kelly S (2015) Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcón LI, Magallón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  PubMed  Google Scholar 

  • Fernández P, Porrini L, Albanesi D, Abriata LA, Dal Peraro M, De Mendoza D, Mansilla MC (2019) Transmembrane prolines mediate signal sensing and decoding in Bacillus subtilis DesK histidine kinase. mBio 10:e02564-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman ZN, Dorus S, Waterfield NR (2013) The KdpD/KdpE two-component system: integrating K+ homeostasis and virulence. PLoS Pathog 9:e1003201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gram L, Grossart H-P, Schlingloff A, Kiørboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber N (2008) The marine nitrogen cycle: overview and challenges. Nitrogen Mar Environ 2:1–50

    Google Scholar 

  • Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 2324:5947–5965

    Article  Google Scholar 

  • Höltje J-V (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Youshao W, Chen F (2013) Archaea dominate ammonia oxidizers in the Permian water ecosystem of midland basin. Microbes Environ 28:396–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua ZS, Qu YN, Zhu Q, Zhou EM, Qi YL, Yin YR, Rao YZ, Tian Y, Li YX, Liu L, Castelle CJ, Hedlund BP, Shu WS, Knight R, Li WJ (2018) Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 9:1–11

    Article  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: Genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146

    Article  PubMed  Google Scholar 

  • Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung WY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee SH, Madsen EL, Rhee SK (2016) Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci USA 113:7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Crielaard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV (2015) Diversity and evolution in the genome of Clostridium difficile. Clinical Microbiol Rev 28:721–741

    Article  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, Clavel T (2016) IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 6:33721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Langenheder S, Comte J, Zha Y, Samad MS, Sinclair L, Eiler A, Lindstrom ES (2016) Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. Environ Microbiol Rep 8:479–485

    Article  CAS  PubMed  Google Scholar 

  • Latasa C, Roux A, Toledo-Arana A, Ghigo J-M, Gamazo C, Penadés JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Csürös M, Hughes AL, Moran MA (2013) Evolution of divergent life history strategies in marine Alphaproteobacteria. mBio 4:e00373-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo ZH, Narsing Rao MP, Chen H, Hua ZS, Li Q, Hedlund BP, Dong ZY, Liu BB, Guo SX, Shu WS, Li WJ (2021) Genomic insights of “Candidatus Nitrosocaldaceae” based on nine new metagenome-assembled genomes, including “Candidatus Nitrosothermus” gen nov. and two new species of “Candidatus Nitrosocaldus.” Front Microbiol 11:3412

    Article  Google Scholar 

  • Martin DP, Murrell B, Khoosal A, Muhire B (2017) Detecting and analyzing genetic recombination using RDP4. In: Keith JM (ed) Methods in molecular biology. Humana, Totowa, pp 433–460

    Google Scholar 

  • Mello B (2018) Estimating timetrees with MEGA and the TimeTree resource. Mol Biol Evol 35:2334–2342

    Article  CAS  PubMed  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910

    Article  CAS  PubMed  Google Scholar 

  • Mori JF, Scott JJ, Hager KW, Moyer CL, Kusel K, Emerson D (2017) Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J 11:2624–2636

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, Heaps SE, Hirt RP, Martin Embley T (2013) Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol 5:2285–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie BG, Rutter M, Nedwell DB (1997) Selection by temperature of nitrate-reducing bacteria from estuarine sediments: species composition and competition for nitrate. FEMS Microbiol Ecol 23:11–22

    Article  CAS  Google Scholar 

  • Oliveira PH, Touchon M, Cury J, Rocha EP (2017) The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun 8:1–11

    Article  CAS  Google Scholar 

  • Puigbò P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2018) Figtree, a graphical viewer of phylogenetic trees, version 1.4. 4. Institute of evolutionary biology, University of Edinburgh

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO (2003) The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 50:1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Revelle WR (2013) psych: procedures for personality and psychological research. Available http://CRAN.R-project.org/package=psych Version = 1.3.10. Accessed 20 Dec 2013

  • Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    Article  CAS  PubMed  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Xiao Y, Gao Y, Zhang G, Casey JF, Shen Y (2018) Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc Natl Acad Sci USA 115:3782–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team RC (2013) R: A language and environment for statistical computing. Available http://www.R-project.org. Accessed 2 Feb 2013

  • Toulza E, Tagliabue A, Blain S, Piganeau G (2012) Analysis of the Global Ocean Sampling (GOS) project for trends in iron uptake by surface ocean microbes. PLoS ONE 7:e30931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troxell B, Hassan HM (2013) Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Laughinghouse HD, Anderson MA, Chen F, Willliams E, Place AR, Zmora O, Zohar Y, Zheng T, Hill RT (2012) Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1. Appl Environ Microbiol 78:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zheng T, Hill RT, Hu X (2014) Permianibacter aggregans gen. nov., sp. nov., a bacterium of the family Pseudomonadaceae capable of aggregating potential biofuel-producing microalgae. Int J Syst Evol Microbiol 64:3503–3507

    Article  PubMed  Google Scholar 

  • Wright WR (2011) Pennsylvanian paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir analysis. AAPG Bull 95:1525–1555

    Article  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Yang X, Li M, Li X, Wei Y, Cao M, Ragauskas A, Thies M, Ding J, Zheng Y (2018) Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohyd Polym 195:515–524

    Article  CAS  Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Chen D, Chen L, Edis R (2002) Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol Biochemi 34:1131–1137

    Article  CAS  Google Scholar 

  • Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Ant v Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  • Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelsond KE, Nesbøe CL, Doolittlea WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Kosoy M, Dittmar K (2014) HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics 15:1–18

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0606), National Natural Science Foundation of China (92051118), Guangdong Science and Technology Department (2019A1515011139), and 2020 Li Ka Shing Foundation (LKSF) Cross-Disciplinary Research Grant (2020LKSFG07A).

Author information

Authors and Affiliations

Authors

Contributions

HW and RTH conceived and designed the experiments; SZ performed the experiments and drafted the manuscript; HW, RTH, and SZ revised the manuscript; HW supervised the project. The final manuscript was approved by all of the authors.

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Animal and human rights statement

This article does not contain any studies performed with human and animals.

Additional information

Edited by Jiamei Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1781 KB)

Supplementary file1 (XLSX 585 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hill, R.T. & Wang, H. Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001T, which originated from Permian ground water. Mar Life Sci Technol 5, 12–27 (2023). https://doi.org/10.1007/s42995-023-00164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-023-00164-3

Keywords

Navigation