Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates.
This is a preview of subscription content, access via your institution.





Data availability
The 18S rDNA sequences were submitted into GenBank (accession numbers are SAMN29232525 for Metopus laminarius and SAMN29232526 for Plagiopyla cf. narasimhamurtii). And the single-cell transcriptomes and mass-culture transcriptomes of two species were submitted to GenBank under BioProject ID PRJNA851543.
References
Arregui L, Pérez-Uz B, Zornoza A, Serrano S (2010) A new species of the genus Metacystis (Ciliophora, Prostomatida, Metacystidae) from a wastewater treatment plant. J Eukaryot Microbiol 57:362–368
Beinart RA, Beaudoin DJ, Bernhard JM, Edgcomb VP (2018a) Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. Mol Ecol 27:1794–1807
Beinart RA, Rotterová J, Čepička I, Gast RJ, Edgcomb VP (2018b) The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives. Environ Microbiol 20:2538–2551
Berger J, Lynn DH (1992) Hydrogenosome-methanogen assemblages in the echinoid endocommensal plagiopylid ciliates, Lechriopyla mystax Lynch, 1930 and Plagiopyla minuta Powers, 1933. J Protozool 39:4–8
Bernard C, Fenchel T (1996) Some microaerobic ciliates are facultative anaerobes. Eur J Protistol 32:293–297
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
Bourland WA, Wendell L, Hampikian G (2014) Morphologic and molecular description of Metopus fuscus Kahl from North America and new rDNA sequences from seven metopids (Armophorea, Metopidae). Eur J Protistol 50:213–230
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421
Campello-Nunes PH, Silva-Neto ID, Sales MHO, Soares CAG, Paiva TS, Fernandes NM (2022) Morphological and phylogenetic investigations shed light on evolutionary relationships of the enigmatic genus Copemetopus (Ciliophora, Alveolata), with the proposal of Copemetopus verae sp. Nov. Eur J Protistol 83:125878
Chen X, Gao S, Liu Y, Wang Y, Wang Y, Song W (2016) Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macro-nuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59:909–919
Chen X, Wang C, Pan B, Lu B, Li C, Shen Z, Warren A, Li L (2020) Single-cell genomic sequencing of three peritrichs (Protista, Ciliophora) reveals less biased stop codon usage and more prevalent programmed ribosomal frameshifting than in other ciliates. Front Mar Sci 7:602323
Clarke KJ, Finlay BJ, Esteban G, Guhl BE, Embley TM (1993) Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270
Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786
Cuthill IC, Stevens M, Sheppard J, Maddocks T, Parraga CA, Troscianko TS (2005) Disruptive coloration and background pattern matching. Nature 434:72–74
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JW, van der Staay GW, Tielens AG, Huynen MA, Hackstein JH (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 28:2379–2391
Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdy I, Embley TM, Tachezy J (2007) Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 6:1431–1438
Duan L, Cheng T, Wei F, Qiao Y, Wang C, Warren A, Niu J, Wang Y (2021) New contribution to epigenetic studies: isolation of micronuclei with high purity and DNA integrity in the model ciliated protist, Tetrahymena thermophila. Eur J Protistol 80:125804
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novak Vanclova AMG, Prasad B, Soukal P, Santana-Molina C, O'Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DP, Lukes J, Lebert M, Vaughan S, Hampl V et al (2019) Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 17:11
Edgcomb VP, Pachiadaki M (2014) Ciliates along oxyclines of permanently stratified marine water columns. J Eukaryot Microbiol 61:434–445
Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971
Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc Biol Sci 262:87–93
Esteban G, Fenchel T, Finlay B (1995) Diversity of free-living morphospecies in the ciliate genus Metopus. Arch Protistenk 146:137–164
Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215
Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163
Feng JM, Jiang CQ, Sun ZY, Hua CJ, Wen JF, Miao W, Xiong J (2020) Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Mol Phylogenet Evol 143:106687
Fernandes NM, Vizzoni VF, Borges BDN, Soares CAG, da Silva-Neto ID, Paiva TDS (2018) Molecular phylogeny and comparative morphology indicate that odontostomatids (Alveolata, Ciliophora) form a distinct class-level taxon related to Armophorea. Mol Phylogenet Evol 126:382–389
Finlay BJ, Fenchel T, Gardener S (1986) Oxygen perception and O2 toxicity in the freshwater ciliated protozoon Loxodes. J Protozool 33:157–165
Finlay BJ, Tellez C, Esteban GF (1993) Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter. J Eukaryot Microbiol 139:2855–2863
Foissner W, Foissner I (1995) Fine structure and systematic position of Enchelyomorpha vermicularis (Smith, 1899) Kahl, 1930, an anaerobic ciliate (Protozoa, Ciliophora) from from domestic sewage. Acta Protozool 34:21–34
Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14:1113–1126
Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W (2016) The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6:24874
Gawryluk RMR, Stairs CW (2021) Diversity of electron transport chains in anaerobic protists. BBA-Bioenergetics 1862:148334
Gawryluk RMR, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ (2016) The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol 26:2729–2738
Gong J, Stoeck T, Yi Z, Miao M, Zhang Q, Roberts DM, Warren A, Song W (2009) Small subunit rRNA phylogenies show that the class Nassophorea is not monophyletic (phylum Ciliophora). J Eukaryot Microbiol 56:339–347
Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512
Hackstein JHP (2018) (Endo)symbiotic methanogenic archaea. Springer, Berlin
Hines HN, Onsbring H, Ettema TJG, Esteban GF (2018) Molecular investigation of the ciliate Spirostomum semivirescens, with first transcriptome and new geographical records. Protist 169:875–886
Hu X (2014) Ciliates in extreme environments. J Eukaryot Microbiol 61:410–418
Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lonnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166
Jiang L, Wang C, Zhuang W, Li S, Hu X (2021a) Taxonomy, phylogeny, and geographical distribution of the little-known Helicoprorodon multinucleatum Dragesco, 1960 (Ciliophora, Haptorida) and key to species within the genus. Eur J Protistol 78:125769
Jiang L, Zhuang W, El-Serehy HA, Al-Farraj SA, Warren A, Hu X (2021b) Taxonomy and molecular phylogeny of two new species of prostomatean ciliates with establishment of Foissnerophrys gen. n. (Alveolata, Ciliophora). Front Microbiol 12:686929
Kahl A (1927) Neue und ergänzende Beobachtungen heterotricher Ciliaten. Arch Protistenk 57:121–203
Kofoid CA (1943) On the type of the genus Diplodinium Schuberg, 1888 (class Ciliophora). Bull Zool Nomencl 1:167
Kolisko M, Boscaro V, Burki F, Lynn DH, Keeling PJ (2014) Single-cell transcriptomics for microbial eukaryotes. Curr Biol 24:R1081–R1082
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278
Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33:2318–2336
Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM (2019) Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol Biol Evol 37:524–539
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323
Li M, Hu G, Li C, Zhao WS, Zou H, Li WX, Wu SG, Wang GT, Ponce-Gordo F (2020) Morphological and molecular characterization of a new ciliate Nyctotheroides grimi n. sp. (Armophorea, Clevelandellida) from Chinese frogs. Acta Trop 208:105531
Li R, Zhuang W, Wang C, El-Serehy H, Al-Farraj SA, Warren A, Hu X (2021a) Redescription and SSU rRNA gene-based phylogeny of an anaerobic ciliate, Plagiopyla ovata Kahl, 1931 (Ciliophora, Plagiopylea). Int J Syst Evol Micr 71:004936
Li S, Zhuang W, Pérez-Uz B, Zhang Q, Hu X (2021b) Two anaerobic ciliates (Ciliophora, Armophorea) from China: morphology and SSU rDNA sequence, with report of a new species, Metopus paravestitus nov. spec. J Eukaryot Microbiol 68:e12822
Liu Z, Hu SK, Campbell V, Tatters AO, Heidelberg KB, Caron DA (2017) Single-cell transcriptomics of small microbial eukaryotes: limitations and potential. ISME J 11:1282–1285
Losey NA, Poudel S, Boyd ES, McInerney MJ (2020) The beta subunit of non-bifurcating NADH-dependent [FeFe]-Hydrogenases differs from those of multimeric electron-bifurcating [FeFe]-Hydrogenases. Front Microbiol 11:1109
Lynn DH (2008) The ciliated protozoa: characterization, classification, and guide to the literature. Springer, Berlin
Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol R 76:444–495
Narayanan N, Priya M, Haridas A, Manilal VB (2007) Isolation and culturing of a most common anaerobic ciliate, Metopus sp. Anaerobe 13:14–20
Nguyen VH, Lavenier D (2009) PLAST: parallel local alignment search tool for database comparison. BMC Bioinform 10:329
Nitla V, Serra V, Fokin S, Modeo L, Verni F, Sandeep B, Kalavati C, Petroni G (2019) Critical revision of the family Plagiopylidae (Ciliophora: Plagiopylea), including the description of two novel species, Plagiopyla ramani and Plagiopyla narasimhamurtii, and redescription of Plagiopyla nasuta Stein, 1860 from India. Zool J Linn Soc-Lond 186:1–45
Orsi W, Edgcomb V, Faria J, Foissner W, Fowle WH, Hohmann T, Suarez P, Taylor C, Taylor GT, Vd’ačný P, Epstein SS (2012) Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela. Int J Syst Evol Microbiol 62:1425–1433
Pan B, Chen X, Hou L, Zhang Q, Qu Z, Warren A, Miao M (2019) Comparative genomics analysis of ciliates Provides insights on the evolutionary history within “Nassophorea-Synhymenia-Phyllopharyngea” assemblage. Front Microbiol 10:2819
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z (2021) The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 113:1416–1427
Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, Newbold CJ, Nsabimana E, Takenaka A, Thomas NA, Ushida K, Hackstein JH, Huynen MA (2006) Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22
Rotterová J, Salomaki E, Pánek T, Bourland W, Žihala D, Táborský P, Edgcomb VP, Beinart RA, Kolísko M, Čepička I (2020) Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol 30:1–14
Rotterová J, Edgcomb VP, Čepička I, Beinart R (2022) Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments. J Eukaryot Microbiol 24:e12912
Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7-14
Sheng Y, He M, Zhao F, Shao C, Miao M (2018) Phylogenetic relationship analyses of complicated class Spirotrichea based on transcriptomes from three diverse microbial eukaryotes: Uroleptopsis citrina, Euplotes vannus and Protocruzia tuzeti. Mol Phylogenet Evol 129:338–345
Smith DG, Gawryluk RM, Spencer DF, Pearlman RE, Siu KW, Gray MW (2007) Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol 374:837–863
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ (2014) A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 24:1176–1186
Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 370:20140326
Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232-235
Vďačný P, Orsi W, Bourland WA, Shimano S, Epstein SS, Foissner W (2011) Morphological and molecular phylogeny of dileptid and tracheliid ciliates: resolution at the base of the class Litostomatea (Ciliophora, Rhynchostomatia). Eur J Protistol 47:295–313
Vďačný P, Rajter Ľ, Stoeck T, Foissner W (2019) A proposed timescale for the evolution of armophorean ciliates: clevelandellids diversify more rapidly than metopids. J Eukaryot Microbiol 66:167–181
Wang G, Wang S, Chai X, Zhang J, Yang W, Jiang C, Chen K, Miao W, Xiong J (2021a) A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage Nanopore data. Comput Struct Biotechnol J 19:1928–1932
Wang J, Zhang T, Li F, Warren A, Li Y, Shao C (2021b) A new hypotrich ciliate, Oxytricha xianica sp. nov., with notes on the morphology and phylogeny of a Chinese population of Oxytricha auripunctata Blatterer & Foissner, 1988 (Ciliophora, Oxytrichidae). Mar Life Sci Technol 3:303–312
Wu T, Li Y, Lu B, Shen Z, Song W, Warren A (2020) Morphology, taxonomy and molecular phylogeny of three marine peritrich ciliates, including two new species: Zoothamnium apoarbuscula n. sp. and Z. apohentscheli n. sp. (Protozoa, Ciliophora, Peritrichia). Mar Life Sci Technol 2:334–348
Xu Y, Shen Z, Gentekaki E, Xu J, Yi Z (2020) Comparative transcriptome analyses during the vegetative cell cycle in the mono-cellular organism Pseudokeronopsis erythrina (Alveolata, Ciliophora). Microorganisms 8:108
Yan Y, Maurer-Alcala XX, Knight R, Kosakovsky Pond SL, Katz LA (2019) Single-cell transcriptomics reveal a correlation between genome architecture and gene family evolution in ciliates. Mbio 10:e02524-19
Zhang T, Li C, Zhang X, Wang C, Roger AJ, Gao F (2021) Characterization and comparative analyses of mitochondrial genomes in single-celled eukaryotes to shed light on the diversity and evolution of linear molecular architecture. Int J Mol Sci 22:2546
Zhu C, Liu W, Li X, Xu Y, El-Serehy HA, Al-Farraj SA, Ma H, Stoeck T, Yi Z (2021) High salinity gradients and intermediate spatial scales shaped similar biogeographical and co-occurrence patterns of microeukaryotes in a tropical freshwater-saltwater ecosystem. Environ Microbiol 23:4778–4796
Zhuang W, Li S, Bai Y, Zhang T, Al-Rasheid KAS, Hu X (2021) Morphology and molecular phylogeny of the anaerobic freshwater ciliate Urostomides spinosus nov. spec. (Ciliophora, Armophorea, Metopida) from China. Eur J Protistol 81:125823
Acknowledgements
Many thanks to Dr. Alan Warren in Natural History Museum, UK for English improvement. Many thanks to Dr. Zhuo Shen in Sun Yat-sen University, China, for her help in species identification. Also, we thank Prof. Weibo Song in Ocean University of China, Dr. Lei Wu, Ms. Jiahui Xu, Ms. Zijing Quan, and Mr. Jian Wang in South China Normal University, for improving figures. This work is supported by the National Natural Science Foundation of China (Grant Number 32070406), Guangdong Basic and Applied Basic Research Foundation (Grant Number 2022A1515010773), and the Science and Technology Planning Project of Guangzhou (Grant Number 202102080168).
Author information
Authors and Affiliations
Contributions
ZY designed the experiments. ZC, JL, and MC completed the experiments. ZY and DS directed data analysis. ZC, JL, MC, SC, SL, and YW analyzed the data. ZC and JL drafted the manuscript. DS and ZY revised the manuscript. All authors edited and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Animal and human rights statement
This article does not contain human participants or animals.
Additional information
Edited by Jiamei Li.
Special topic: Ciliatology.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, Z., Li, J., Salas-Leiva, D.E. et al. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. Mar Life Sci Technol 4, 609–623 (2022). https://doi.org/10.1007/s42995-022-00147-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42995-022-00147-w
Keywords
- Anaerobic metabolism
- Mitochondrion-related organelle
- Single-cell transcriptome
- Evolutionary transition