Skip to main content
Log in

Structural diversity and biological activity of natural p-terphenyls

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

p-Terphenyls are aromatic compounds consisting of a central benzene ring substituted with two phenyl groups, and they are mainly isolated from terrestrial and marine organisms. The central ring of p-Terphenyls is usually modified into more oxidized forms, e.g., para quinone and phenols. In some cases, additional ring systems were observed on the terphenyl-type core structure or between two benzene moieties. p-Terphenyls have been reported to have cytotoxic, antimicrobial, antioxidant and α-glucosidase inhibitory effects. In this review, we will mainly summarize the structural diversity and biological activity of naturally occurring p-Terphenyls referring to the research works published before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andernach L, Sandjo LP, Liermann JC, Schlämann R, Richter C, Ferner JP, Schwalbe H, Schüffler A, Thines E, Opatz T (2016) Terphenyl derivatives from Allantophomopsis lycopodina. J Nat Prod 79:2718–2725

    Article  CAS  PubMed  Google Scholar 

  • Anke H, Casser I, Herrmann R, Steglich W (1984) New terphenylquinones from mycelial cultures of Punctularia atropurpurascens (basidiomycetes). Z Naturforsch 39:695–698

    Article  Google Scholar 

  • Belofsky GN, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1998) New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii. J Nat Prod 61:1115–1119

    Article  CAS  PubMed  Google Scholar 

  • Briggs LH, Cambie RC, Dean IC, Hodges R, Ingram WB, Rutledge PS (1976) Chemistry of fungi. XI corticins A, B, and C, benzobisbenzofurans from Corticium caeruleum. Aust J Chem 29:179–190

    Article  CAS  Google Scholar 

  • Bsel H, Bresinsky A, Geigenmüller G, Herrmann R, Kilpert C, Steglich W (1989) Flavomentine und spiromentine, neue terphenylchinon-derivate aus PaxiZZus atrotomentosus und P. panuoides (Boletales). Liebigs Ann Chem 8:803–810

    Article  Google Scholar 

  • Buchanan MS, Hashimoto T, Takaoka S, Asakawa Y (1995) (+) -Osmundalactone, γ-lactones and spiromentins from the fungus Paxillus atrotomentosus. Phytochemistry 40:1251–1257

    Article  CAS  Google Scholar 

  • Cai SX, Sun SW, Zhou HN, Kong XL, Zhu TJ, Li DH, Gu QQ (2011) Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. J Nat Prod 74:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Calì V, Spatafora C, Corrado T (2003) Polyhydroxy-p-terphenyls and related p-terphenylquinones from fungi: overview and biological properties. Stud Nat Prod Chem 29:263–307

    Article  Google Scholar 

  • Cali V, Spatafora C, Tringali C (2004) Sarcodonins and sarcoviolins, bioactive polyhydroxy-p-terphenyl pyrazinediol dioxide conjugates from fruiting bodies of the basidiomycete Sarcodon leucopus. Eur J Org Chem 3:592–599

    Article  Google Scholar 

  • Deng JJ, Lu CH, Li SR, Hao HL, Li ZY, Zhu J, Li YY, Shen YM (2014) p-Terphenyl O-β-glucuronides, DNA topoisomerase inhibitors from Streptomyces sp. LZ35ΔgdmAI. Bioorg Med Chem Lett 24:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (1994) The biosynthesis of shikimate metabolites. Nat Prod Rep 11:173

    Article  CAS  PubMed  Google Scholar 

  • Edwards RL, Gill M (1973) Constituents of the higher fungi. Part X1V. 3’,4’,4-trihydroxypulvinone, thelephoric acid, and novel pyrandione and furanone pigments from Suillus grevillei (Klotsch) Sing. [Boletus elegans (Schum. per Fries)]. J Chem Soc Perkin Trans I 4:1921–1929

    Article  Google Scholar 

  • Elix JA, Gaul KL, Hockless DCR, Wardlaw JH (1995) Structure determination of butlerins A, B and C-three new lichen p-terphenyls. Aust J Chem 48:1049–1053

    Article  CAS  Google Scholar 

  • Geraci C, Ner P, Paterno C, Tringali C (2000) An unusual nitrogenous terphenyl derivative from fruiting bodies of the basidiomycete Sarcodon leucopus. J Nat Prod 63:347–351

    Article  CAS  PubMed  Google Scholar 

  • Gripenberg J (1958) Fungus pigments. Acta Chem Scand 12:1411–1414

    Article  CAS  Google Scholar 

  • Gripenberg J (1971) Fungus pigments. XXII. Peniosanguin and its methyl ether. Acta Chem Scand B25:2999–3005

    Article  Google Scholar 

  • Gripenberg J (1974) Fungus pigments. XXIII. hydnuferrugin: a novel type of a 2,5-diphenylbenzoquinone-derived pigment. Tetrahedron Lett 5:619–622

    Article  Google Scholar 

  • Gripenberg J (1981) Fungus pigments. XXIX. the pigments of Hydnellum ferrugineum (Fr.) Karstein and H. zonatum (Batsch) Karsten. Acta Chem Scand B35:513–519

    Article  CAS  Google Scholar 

  • Gripenberg J, Martikkala J (1969) Fungus pigments. XIX. xylerythrin and its 5-O-methyl-derivative. Acta Chem Scand B23:2583–2588

    Article  Google Scholar 

  • Gripenberg J, Hiltunen L, Pakkanen T (1979a) Fungus pigments. XXVI. A revised structure of peniophorinin. Acta Chem Scand B33:1–5

    Article  CAS  Google Scholar 

  • Gripenberg J, Hiltunen L, Pakkanen T (1979b) Fungus pigments XXVII xylerythrin. Acta Chem Scand B33:6–10

    Article  CAS  Google Scholar 

  • Gripenberg J, Hiltunen L, Pakkanen T (1980) Fungus pigments. XXVIII. The structure of peniophorin. Acta Chem Scand B34:575–578

    Article  CAS  Google Scholar 

  • Guo HJ, Hu HJ, Liu SC, Liu XZ, Zhou YG, Che YS (2007) Bioactive p-terphenyl derivatives from a Cordyceps-colonizing isolate of Gliocladium sp. J Nat Prod 70:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Guo ZK, Yan T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2012) p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3. J Nat Prod 75:15–21

    Article  CAS  PubMed  Google Scholar 

  • Hassan J, Hathroubi C, Gozzi C, Lemaire M (2001) Preparation of unsymmetrical biaryls via palladium-catalyzed coupling reaction of aryl halides. Tetrahedron 57:7845–7855

    Article  CAS  Google Scholar 

  • Hayashi K, Yamazoe A, Ishibashi Y, Kusaka N, Oono Y, Nozaki H (2008) Active core structure of terfestatin A, a new specific inhibitor of auxin signaling. Bioorg Med Chem 16:5331–5344

    Article  CAS  PubMed  Google Scholar 

  • Ho JH, Lin YC, Chou LT, Chen YZ, Liu WQ, Chuang CL (2013) Syntheses of p-terphenyls and 11,12-dihydroindeno[2,1-a]fluorene by one-pot benzannulation of Diels-Alder reactions of trans-1,2-dichloroethene and dienes. Tetrahedron Lett 54:1991–1993

    Article  CAS  Google Scholar 

  • Holzapfel M, Kilpert C, Steglich W (1989) Über Leucomentine, farblose Vorstufen des Atromentins aus dem Samtfuβkrempling (Paxillus atrotomentosus). Liebigs Ann Chem 8:797–801

    Article  Google Scholar 

  • Hu L, Liu JK (2001) Two novel phenylacetoxylated p-terphenyls from Thelephora ganbajun Zang. Z Naturforsch 56:983–987

    Article  Google Scholar 

  • Hu L, Liu JK (2003) p-Terphenyls from the basidiomycete Thelephora aurantiotincta. Z Naturforsch 58:452–454

    Article  CAS  Google Scholar 

  • Hu L, Gao JM, Liu JK (2001) Unusual poly (phenylacetyloxy) -substituted 1,1’:4’,1″-terphenyl derivatives from fruiting bodies of the basidiomycete Thelephora ganbajun. Helv Chim Acta 84:3342–3349

    Article  CAS  Google Scholar 

  • Hwang JS, Song KS, Kim WG, Lee TH, Koshino H, Yoo ID (1997) Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiplex. J Antibiot 50:773–777

    Article  CAS  Google Scholar 

  • Jägers E, Hillen-Maske E, Schmidt H, Steglich W, Horak E (1987a) Acetylierte terphenylchinon-derivate aus Anthracophyllum-Arten (Agaricales). Z Naturforsch 42:1354–1360

    Article  Google Scholar 

  • Jägers E, Hillen-Maske E, Steglich W (1987b) Inhaltsstoffe von Boletopsis leucomelaena (Basidiomycetes): Klärung der chemischen Natur von “Leucomelon” und “Protoleucomelon.” Z Naturforsch 42:1349–1353

    Article  Google Scholar 

  • Jiménez C (2018) Marine natural products in medicinal chemistry. ACS Med Chem Lett 9:959–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamigauchi T, Sakazaki R, Nagashima K, Kawamura Y, Yasuda Y, Matsushima K, Tani H, Takahashi Y, Ishii K, Suzuki R, Koizumi K, Nakai H, Ikenishi Y, Terui Y (1998) Terprenins, novel immunosuppressants produced by Aspergillus candidus. J Antibiot 51:445–450

    Article  CAS  Google Scholar 

  • Kawada K, Arimura A, Tsuri T, Fuji M, Komurasaki T, Yonezawa S, Kugimiya A, Haga N, Mitsumori S, Inagaki M, Nakatani T, Tamura Y, Takechi S, Taishi T, Kishino J, Ohtani M (1998) Total synthesis of terprenin, a highly potent and novel immunoglobulin E antibody suppressant. Angew Chem Int Ed 37:973–975

    Article  CAS  Google Scholar 

  • Kim JH, Lee JS, Song KS, Kwon CS, Kim YK, Kim JS (2004) Polyozellin isolated from polyozellus multiplex induces phase 2 enzymes in mouse hepatoma cells and differentiation in human myeloid leukaemic cell lines. J Agric Food Chem 52:451–455

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Takemura K, Koshimizu K, Nagano H, Kawazu K (1982) Candidusin A and B: new p-terphenyls with cytotoxic effects on sea urchin embryos. Agric Biol Chem 46:585–589

    CAS  Google Scholar 

  • Kuhnert E, Surup F, Herrmann J, Huch V, Müller R, Stadler M (2015) Rickenyls A-E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68–73

    Article  CAS  PubMed  Google Scholar 

  • Kurobane I, Vining LC (1979) 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J Antibiot 32:559–564

    Article  CAS  Google Scholar 

  • Lee IK, Yun BS, Cho SM, Kim WG, Kim JP, Ryoo IJ, Koshino H, Yoo ID (1996) Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod 59:1090–1092

    Article  CAS  PubMed  Google Scholar 

  • Lee IK, Yun BS, Kim JP, Ryoo IJ, Kim YH, Yoo ID (2003) Neuroprotective activity of p-terphenyl leucomentins from the mushroom Paxutus panuoicles. Biosci Biotechnol Biochem 67:1813–1816

    Article  CAS  PubMed  Google Scholar 

  • Lee IK, Jung JY, Kim YS, Rhee MH, Yun BS (2009) p-Terphenyls from the fruiting bodies of Paxillus curtisii and their antioxidant properties. Bioorg Med Chem 17:4674–4680

    Article  CAS  PubMed  Google Scholar 

  • Li W, Gao W, Zhang M, Li YL, Li L, Li XB, Chang WQ, Zhao ZT, Lou HX (2016) p-Terphenyl derivatives from the endolichenic fungus Floricola striata. J Nat Prod 79:2188–2194

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li XB, Lou HX (2018) Structural and biological diversity of natural p-terphenyls. J Asian Nat Prod Res 20:1–13

    Article  PubMed  Google Scholar 

  • Liu JK (2006) Natural terphenyls: developments since 1877. Chem Rev 106:2209–2223

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Zhao BB, Lu CH, Huang JJ, Shen YM (2012) Two new p-terphenyl derivatives from the marine fungal strain Aspergillus sp. AF119. Nat Prod Commun 7:1057–1062

    CAS  PubMed  Google Scholar 

  • Ma BJ, Liu JK (2005) An unusual nitrogenous terphenyl derivative from fruiting bodies of the basidiomycete Sarcodon scabrosus. Z Naturforsch 60:565–568

    Article  CAS  Google Scholar 

  • Ma K, Han JJ, Bao L, Wei TZ, Liu HW (2014) Two sarcoviolins with antioxidative and α-glucosidase inhibitory activity from the edible mushroom Sarcodon leucopus collected in Tibet. J Nat Prod 77:942–947

    Article  CAS  PubMed  Google Scholar 

  • McMorris TC, Anchel M (1963) Phlebiarubrone, a basidiomycete pigment related to polyporic acid. Tetrahedron Lett 4:335–337

    Article  Google Scholar 

  • McMorris TC, Anchel M (1967) The structure of the basidiomycete ortho quinone, phlebiarubrone, and of its novel acetylation product. Tetrahedron 23:3985–3991

    Article  CAS  Google Scholar 

  • Nagasawa I, Kaneko A, Suzuki T, Nishio K, Kinoshita K, Shiro M, Koyama K (2014) Potential anti-angiogenesis effects of p-terphenyl compounds from Polyozellus multiplex. J Nat Prod 77:963–968

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa F, Takahashi S, Naito A, Sato S, Iwabuchi S, Tamura C (1984) Terferol, an inhibitor of cyclic adenosine 3’,5’-monophosphate phosphodiesterase II structural elucidation. J Antibiot 37:10–12

    Article  CAS  Google Scholar 

  • Norikura T, Fujiwara K, Yanai T, Sano Y, Sato T, Tsunoda T, Kushibe K, Todate A, Morinaga Y, Iwai K, Matsue H (2013) p-Terphenyl derivatives from the mushroom Thelephora aurantiotincta suppress the proliferation of human hepatocellular carcinoma cells via iron chelation. J Agric Food Chem 61:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Gloer JB, Wicklow DT, Dowd PF (1998) Arenarins A-C: new cytotoxic fungal metabolites from the sclerotia of Aspergillus arenarius. J Nat Prod 61:702–705

    Article  PubMed  Google Scholar 

  • Qiu D, Meng H, Jin L, Wang S, Tang SB, Wang X, Mo FY, Zhang Y, Wang JB (2013a) Synthesis of aryl trimethylstannanes from aryl amines: a sandmeyer-type stannylation reaction. Angew Chem Int Ed 52:11581–11584

    Article  CAS  Google Scholar 

  • Qiu J, Zhao BB, Shen Y, Chen W, Ma YD, Shen YM (2013b) A novel p-terphenyl derivative inducing cell-cycle arrest and apoptosis in MDA-MB-435 cells through topoisomerase inhibition. Eur J Med Chem 68:192–202

    Article  CAS  PubMed  Google Scholar 

  • Quack W, Scholl H, Budzikiewicz H (1982) Ascocorynin, a terphenylquinone from Ascocoryne sarcoides. Phytochemistry 21:2921–2923

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y (2003a) Antioxidant activity of curtisians I-L from the inedible mushroom Paxillus curtisii. Planta Med 69:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y (2003b) Curtisians E-H: four p-terphenyl derivatives from the inedible mushroom Paxillus curtisii. Phytochemistry 64:649–654

    Article  CAS  PubMed  Google Scholar 

  • Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y (2003c) Curtisians M-Q: five novel p-terphenyl derivatives from the mushroom Paxillus curtisii. Chem Pharm Bull 51:1064–1067

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y (2003d) Thelephantins A, B and C: three benzoyl p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 62:109–113

    Article  CAS  PubMed  Google Scholar 

  • Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y (2003e) Thelephantins D-H: five p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 63:919–924

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Hitaka Y, Tanaka M, Nukada M, Yamamoto I, Asakawa Y (2004) Thelephantins I-N: p-terphenyl derivatives from the inedible mushroom Hydnellum caeruleum. Phytochemistry 65:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Rahbak L, Frisvad JC, Christophersen C (2000) An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. Phytochemistry 53:581–586

    Article  Google Scholar 

  • Ren FX, Chen SX, Zhang Y, Zhu SM, Xiao JH, Liu XZ, Su RB, Che YS (2018) Hawaiienols A-D, highly oxygenated p-terphenyls from an insect-associated fungus, Paraconiothyrium hawaiiense. J Nat Prod 81:1752–1759

    Article  CAS  PubMed  Google Scholar 

  • Rudulovic N, Quang DN, Hashimoto T, Nukada M, Asakawa Y (2005) Terrestrins A-G: p-terphenyl derivatives from the inedible mushroom Thelephora terrestris. Phytochemistry 66:1052–1059

    Article  Google Scholar 

  • Schneider P, Bouhired S, Hoffmeister D (2008) Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides. Fungal Genet Biol 45:1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Yu TT, Cui DM (2015) Advances in the synthetic methods of terphenyls. Chin J Org Chem 35:362–372

    Article  CAS  Google Scholar 

  • Silverton JV (1973) The crystal and molecular structure of leuco-thelephoric acid hexamethyl ether. Acta Crystallogr B 29:293–298

    Article  CAS  Google Scholar 

  • Stead P, Affleck K, Sidebottom PJ, Taylor NL, Drake CS, Todd M, Jowett A, Webb G (1999) Isolation and characterisation of a prenylated p-terphenyl metabolite of Aspergillus candidus possessing potent and selective cytotoxic activity; studies on mechanism of action. J Antibiot 52:89–95

    Article  CAS  Google Scholar 

  • Takahashi C, Yoshihira K, Natori S, Umeda M (1976) The structures of toxic metabolites of Aspergillus candidus. I. The compounds A and E, cytotoxic p-terphenyls. Chem Pharm Bull 24:613–620

    Article  CAS  Google Scholar 

  • Tian SZ, Pu X, Luo GY, Zhao LX, Xu LH, Li WJ, Luo YG (2013) Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J Agric Food Chem 61:3006–3012

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Yamagata KI, Fujimoto T, Nakamura E (2008) Manganese-catalyzed benzene synthesis by [2+2+2] coupling of 1,3-dicarbonyl compound and terminal acetylene. J Am Chem Soc 130:7792–7793

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto S, Macabalang AD, Abe T, Hirota H, Ohta T (2002) Thelephorin A: a new radical scavenger from the mushroom Thelephora vialis. Tetrahedron 58:1103–1105

    Article  CAS  Google Scholar 

  • Wang SM, Han JJ, Ma K, Jin T, Bao L, Pei YF, Liu HW (2014) New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 98:149–155

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Inada H, Hayashi A, Higashimoto K, Pruksakorn P, Kamada S, Arai M, Ishida S, Kobayashi M (2007) Prenylterphenyllin and its dehydroxyl analogs, new cytotoxic substances from a marine-derived fungus Aspergillus candidus IF10. J Antibiot 60:586–590

    Article  CAS  Google Scholar 

  • Weisgraber K, Weiss U, Milne GWA, Silverton JV (1972) Hexamethyl ether of leuco-thelephoric acid from Corticium caeruleum. Phytochemistry 11:2585–2587

    Article  CAS  Google Scholar 

  • Xie ZP, Zeng M, Shi W, Cui DM, Zhang C (2019) Cs2CO3-Promoted synthesis of p-terphenyls from allyl ketones. J Saudi Chem Soc 23:215–221

    Article  CAS  Google Scholar 

  • Yamazoe A, Hayashi K, Kuboki A, Ohira S, Nozaki H (2004) The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitor from Streptomyces sp. Tetrahedron Lett 45:8359–8362

    Article  CAS  Google Scholar 

  • Yan W, Wuringege LSJ, Guo ZK, Zhang WJ, Wei W, Tan RX, Jiao RH (2017) New p-terphenyls from the endophytic fungus Aspergillus sp. YXf3. Bioorg Med Chem Lett 27:51–54

    Article  CAS  PubMed  Google Scholar 

  • Yun BS, Lee IK, Kim JP, Yoo ID (2000) Curtisians A-D, new free radical scavengers from the mushroom Paxillus curtisii. J Antibiot 53:114–122

    Article  CAS  Google Scholar 

  • Zhang L, Liang FS, Cheng X, Liu Q (2009) A new route to multifunctionalized p-terphenyls and heteroaryl analogues via [5C+1C (N)] annulation strategy. J Org Chem 74:899–902

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen W, Li YY, Deng JJ, Zhu DY, Duan J, Liu Y, Shi GY, Xie C, Wang HX, Shen YM (2014) Identification and catalytic characterization of a nonribosomal peptide synthetase-like (NRPS-like) enzyme involved in the biosynthesis of echosides from Streptomyces sp. LZ35. Gene 549:352–358

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSFC-Shandong Joint Fund (U1906212, U1606403), the Pilot National Laboratory for Marine Science and Technology (2018SDKJ0401-2, 2016ASKJ08-02), the National Natural Science Foundation of China Major Project for Discovery of New Leading Compounds (81991522), the National Science and Technology Major Project for Significant New Drugs Development (2018ZX09735004), the Major National Science and Technology Projects of the Ministry of Science and Technology (81991522), the Fundamental Research Funds for the Central Universities (201941001), Project funded by China Postdoctoral Science Foundation (2017M622286), and the Taishan Scholar Youth Expert Program in Shandong Province (tsqn201812021).

Author information

Authors and Affiliations

Authors

Contributions

DL, GZ, QC and TZ designed this review. GZ wrote the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guojian Zhang or Dehai Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Chengchao Chen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 733 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zhu, T., Che, Q. et al. Structural diversity and biological activity of natural p-terphenyls. Mar Life Sci Technol 4, 62–73 (2022). https://doi.org/10.1007/s42995-021-00117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-021-00117-8

Keywords

Navigation