Skip to main content
Log in

Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Seahorses are a hallmark of specialized morphological features due to their elongated prehensile tail. However, the underlying genomic grounds of seahorse tail development remain elusive. Herein, we evaluated the roles of essential genes from the Wnt gene family for the tail developmental process in the lined seahorse (Hippocampus erectus). Comparative genomic analysis revealed that the Wnt gene family is conserved in seahorses. The expression profiles and in situ hybridization suggested that Wnt5a, Wnt8a, and Wnt11 may participate in seahorse tail development. Like in other teleosts, Wnt5a and Wnt11 were found to regulate the development of the tail axial mesoderm and tail somitic mesoderm, respectively. However, a significantly extended expression period of Wnt8a during seahorse tail development was observed. Signaling pathway analysis further showed that Wnt8a up-regulated the expression of the tail axial mesoderm gene (Shh), while interaction analysis indicated that Wnt8a could promote the expression of Wnt11. In summary, our results indicate that the special extended expression period of Wnt8a might promote caudal tail axis formation, which contributes to the formation of the elongated tail of the seahorse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agathon A, Thisse C, Thisse B (2003) The molecular nature of the zebrafish tail organizer. Nature 424:448–452

    Article  CAS  PubMed  Google Scholar 

  • Aires R, Dias A, Mallo M (2018) Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 55:81–86

    Article  CAS  PubMed  Google Scholar 

  • Andre P, Song H, Kim W, Kispert A, Yang YZ (2015) Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 142:1516–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angers S, Moon RT (2009) Proximal events in wnt signal transduction. Nat Rev Mol Cell Bio 10:468–477

    Article  CAS  Google Scholar 

  • Ashley-Ross MA (2002) Mechanical properties of the dorsal fin muscle of seahorse (Hippocampus) and pipefish (Syngnathus). J Exp Zool 293:561–577

    Article  PubMed  Google Scholar 

  • Benazeraf B, Pourquie O (2013) Formation and segmentation of the vertebrate body axis. Annu Rev Cell Dev Biol 29:1–26

    Article  CAS  PubMed  Google Scholar 

  • Cambray N, Wilson V (2002) Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129:4855–4866

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell Science, Malden

    Google Scholar 

  • Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J (2008) Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. Development 135:3719–3729

    Article  CAS  PubMed  Google Scholar 

  • Cha SW, Tadjuidje E, White J, Wells J, Mayhew C, Wylie C, Heasman J (2009) Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr Biol 19:1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Charrier JB, Teillet MA, Lapointe F, Le Douarin NM (1999) Defining subregions of Hensen’s node essential for caudalward movement, midline development and cell survival. Development 126:4771–4783

    Article  CAS  PubMed  Google Scholar 

  • Cho SJ, Vallès Y, Giani JVC, Seaver EC, Weisblat DA (2010) Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol Biol Evol 27:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia KM, Conlon RA (2001) Whole-mount in situ hybridization to mouse embryos. Methods 23:335–338

    Article  CAS  PubMed  Google Scholar 

  • Cunningham TJ, Kumar S, Yamaguchi TP, Duester G (2015) Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn 244:797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan RN, Samin P, Tatjana P, Dorsky RI (2015) Identification of wnt genes expressed in neural progenitor zones during zebrafish brain development. PLoS ONE 10:e0145810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erter CE, Wilm TP, Basler N, Wright CVE, Solnica-Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128:3571–3583

    Article  CAS  PubMed  Google Scholar 

  • Garriock RJ, Warkman AS, Meadowsn SM, D’Agostino S, Krieg PA (2007) Census of vertebrate Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16. Dev Dyn 236:1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Gont LK, Steinbeisser H, Blumberg B, Derobertis EM (1993) Tail formation as a continuation of gastrulation: the multiple cell-populations of the Xenopus tailbud derive from the late blastopore lip. Development 119:991–1004

    Article  CAS  PubMed  Google Scholar 

  • Hale ME (1996) Functional morphology of ventral tail bending and prehensile abilities of the seahorse, Hippocampus kuda. J Morphol 227:51–65

    Article  Google Scholar 

  • Harlin-Cognato A, Hoffman EA, Jones AG (2006) Gene cooption without duplication during the evolution of a male-pregnancy gene in pipefish. Proc Natl Acad Sci USA 103:19407–19412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino H, Nakanishi A, Seki R, Aoki T, Yamaha E, Kawahara A, Shimizu T, Hibi M (2018) Roles of maternal wnt8a transcripts in axis formation in zebrafish. Dev Biol 434:96–107

    Article  CAS  PubMed  Google Scholar 

  • Hoppler S, Brown JD, Moon RT (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10:2805–2817

    Article  CAS  PubMed  Google Scholar 

  • Hopwood ND, Pluck A, Gurdon JB (1989) MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J 8:3409–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553

    Article  CAS  PubMed  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2010) Production of Wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka. Development 137:1807–1813

    Article  CAS  PubMed  Google Scholar 

  • Iwamatsu T (2004) Stages of normal development in the medaka Oryzias latipes. Mech Dev 121:605–618

    Article  CAS  PubMed  Google Scholar 

  • Kestler HA, Kuhl M (2008) From individual Wnt pathways towards a Wnt signalling network. Philo Trans R Soc B 363:1333–1347

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  CAS  PubMed  Google Scholar 

  • Krausova M, Korinek V (2014) Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 26:570–579

    Article  CAS  PubMed  Google Scholar 

  • Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1:103–114

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Li YX, Qin G, Chen ZL, Qu M, Zhang B, Han X, Wang X, Qian PY, Lin Q (2020) Regulatory role of retinoic acid in male pregnancy of the seahorse. Innov 1:100052

    Google Scholar 

  • Lin Q, Fan SH, Zhang YH, Xu M, Zhang HX, Yang YL, Lee AP, Woltering JM, Ravi V, Gunter HM, Luo W, Gao ZX, Lim ZW, Qin G, Schneider RF, Wang X, Xiong PW, Li G, Wang K, Min JM et al (2016) The seahorse genome and the evolution of its specialized morphology. Nature 540:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta C_{{\text{T}}} }}\) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lourie SA, Foster SJ, Cooper EWT, Vincent ACJ (2004) A guide to the identification of seahorses. Project Seahorse and TRAFFIC North America, Washington D.C.

  • Lu FI, Thisse C, Thisse B (2011) Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc Natl Acad Sci USA 108:15876–15880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita R, Mizuno T, Koshida S, Kuroiwa A, Takeda H (1998) Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and no tail activity. Mech Dev 71:165–176

    Article  CAS  PubMed  Google Scholar 

  • Martin BL, Kimelman D (2008) Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 15:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin BL, Kimelman D (2012) Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13:157–162

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Nagai Y, Asaoka Y, Ohno M, Namae M, MitaniH ST, Shimizu N, Terai S, Sakaida I, Kondoh H, Katada T, Furutani-Seiki M, Nishina H (2009) Retinoic acid signaling positively regulates liver specification by inducing wnt2bb gene expression in medaka. Hepatology 51:1037–1045

    Article  CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathway. Science 303:1483–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neutens C, Adriaens D, Christiaens J, De-Kegel B, Dierick M, Boistel R, Hoorebeke LV (2014) Grasping convergent evolution in syngnathids: a unique tale of tails. J Anat 224:710–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli B, Ferrer FO, Socorro JA, Dominguez LM (2018) Early development of the longsnout seahorse Hippocampus reidi (Syngnathidae) within the male brood pouch. J Fish Biol 92:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Nusse R (2001) An ancient cluster of Wnt paralogues. Trends Genet 17:443

    Article  CAS  PubMed  Google Scholar 

  • Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527

    Article  CAS  PubMed  Google Scholar 

  • Ober EA, Verkade H, Field HA, Stainier DYR (2006) Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442:688–691

    Article  CAS  PubMed  Google Scholar 

  • Porter MM, Adriaens D, Hatton RL, Meyers MA, Mckittrick J (2015) Why the seahorse tail is square. Science 349:aaa6683

    Article  PubMed  CAS  Google Scholar 

  • Praet T, Adriaens D, Van-Cauter S, Masschaele B, De-Beule M, Verhegghe B (2012) Inspiration from nature: dynamic modelling of the musculoskeletal structure of the seahorse tail. Int J Numer Method Biomed Eng 28:1028–1042

    Article  PubMed  Google Scholar 

  • Prud’homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M (2002) Phylogenetic analysis of the Wnt gene family: insights from lophotrochozoan members. Curr Biol 12:1395–1400

    Article  CAS  PubMed  Google Scholar 

  • Ramel MC, Buckles GR, Baker KD, Lekven AC (2005) WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol 287:237–248

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  • Ryan JF, Baxevanis AD (2007) Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito-Diaz K, Chen TW, Wang XX, Thorne CA, Wallace HA, Page-McCaw A, Lee E (2013) The way Wnt works: components and mechanism. Growth Factors 31:1–31

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279:125–141

    Article  CAS  PubMed  Google Scholar 

  • Sommer S, Whittington CM, Wilson AB (2012) Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Dev Biol 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Kispert A, Yang YZ (2008) Redundant function of Wnt5a and Wnt11 in somitogenesis and anteroposterior axis elongation. Dev Biol 319:584–585

    Article  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    Article  CAS  PubMed  Google Scholar 

  • Thorpe CJ, Weldinger G, Moon RT (2005) Wnt/β-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 132:1763–1772

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Lynch VJ (2010) Evolutionary novelties. Curr Biol 20:48–52

    Article  CAS  Google Scholar 

  • Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, Zeller R (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298:827–830

    Article  CAS  Google Scholar 

  • Whittington CM, Griffith OW, Qi WH, Thompson MB, Wilson AB (2015) Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol Biol Evol 32:3114–3131

    CAS  PubMed  Google Scholar 

  • Wiese KE, Nusse R, van-Amerongen R (2018) Wnt signalling: conquering complexity. Development 145:dev165902

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Bradley A, Mcmahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Ravi V, Qin G, Dai H, Zhang HX, Han FM, Wang X, Liu YH, Yin JP, Huang LM, Venkatesh B, Lin Q (2020) Comparative genomics reveal shared genomic changes in syngnathid fishes and signatures of genetic convergence with placental mammals. Natl Sci Rev 7:964–977

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the K.C.Wong Education Foundation, the National Natural Science Foundation of China (nos. 41825013, 41706178, 41576145, 41806189, 32000350), the China postdoctoral science foundation grant (no. 2019M663151), the Guangdong Special Support Program of Youth Scientific and Technological Innovation (2017TQ04Z269). We are also grateful to Wenqi Hu for help with cell culture.

Author information

Authors and Affiliations

Authors

Contributions

QL and BZ designed the study, performed laboratory protocols, and analyzed bioinformatics. BZ, GQ and YHZ prepared the tables and figures. BZ and CYL carried out the qRT-PCR and in situ hybridization analysis. LLQ and CLC helped with the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Lin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Animal and human rights statement

This article does not contain any studies with human participants. All animal experiments were conducted in accordance with established guidelines and approved by the Chinese Academy of Sciences (IACUC #160413).

Additional information

Edited by Jiamei Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Qin, G., Qu, L. et al. Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail. Mar Life Sci Technol 3, 416–426 (2021). https://doi.org/10.1007/s42995-021-00099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-021-00099-7

Keywords

Navigation