Skip to main content
Log in

The application of genome editing technology in fish

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aff5573

    Article  CAS  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao JQ, Mu YN, Xiang LX, Fan DD, Feng MJ, Zhang SC, Shi Q, Zhu LY, Li T, Ding Y, Nie L, Li QH, Dong WR, Jiang L, Sun B, Zhang XH, Li MY, Zhang HQ, Xie SB, Zhu YB et al (2015) Genome sequencing of the Perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet 11:e1005118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baloch AR, Franek R, Tichopad T, Fucikova M, Rodina M, Psenicka M (2019) Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production. Animals 9:174

    Article  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764–764

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Ouinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  • Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cal L, Suarez-Bregua P, Braasch I, Irion U, Kelsh R, Miguel Cerda-Reverter J, Rotllant J (2019a) Loss-of-function mutations in the melanocortin 1 receptor cause disruption of dorso-ventral countershading in teleost fish. Pigment Cell Melanoma Res 32:817–828

    Article  CAS  PubMed  Google Scholar 

  • Cal L, Suarez-Bregua P, Comesana P, Owen J, Braasch I, Kelsh R, Cerda-Reverter JM, Rotllant J (2019b) Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci Rep 9:13

    Article  CAS  Google Scholar 

  • Carlson DF, Tan WF, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Zhang GJ, Shao CW, Huang QF, Liu G, Zhang P, Song WT, An N, Chalopin D, Volff JN, Hong YH, Li QY, Sha ZX, Zhou HL, Xie MS, Yu QL, Liu Y, Xiang H, Wang N, Wu K et al (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Zhou R, Kuo Y-c, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowder CM, Lassiter CS, Gorelick DA (2018) Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology 159:980–993

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Liu Y, Wang W, Wang Q, Zhang N, Lin F, Wang N, Shao C, Dong Z, Li Y, Yang Y, Hu M, Li H, Gao F, Wei Z, Meng L, Liu Y, Wei M, Zhu Y, Guo H et al (2017) Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 7:42213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan C, Lin Q, Gong G, Yang T, Xiong S, Xiong Y, Huang P, Gui JF, Mei J (2018) A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco). Sci Bull 63:1420–1430

    Article  CAS  Google Scholar 

  • Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D, Bock C (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14:297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  CAS  PubMed  Google Scholar 

  • Dong ZJ, Ge JC, Li K, Xu ZQ, Liang D, Li JY, Li JB, Jia WS, Li YH, Dong XH, Cao SS, Wang XX, Pan JL, Zhao QS (2011) Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE 6:e28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong ZJ, Ge JC, Xu ZQ, Dong XH, Cao SS, Pan JL, Zhao QS (2014) Generation of myostatin b knockout yellow catfish (Tachysurus Fulvidraco) using transcription activator-like effector nucleases. Zebrafish 11:265–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dranow DB, Hu K, Bird AM, Lawry ST, Adams MT, Sanchez A, Amatruda JF, Draper BW (2016) Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet 12:24

    Article  CAS  Google Scholar 

  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 Generation. PLoS ONE 9:7

    Google Scholar 

  • Eroglul AU, Mulligan TS, Zhang LY, White DT, Sengupta S, Nie C, Lu NY, Qian J, Xu LS, Pei WH, Burgess SM, Saxena MT, Mumm JS (2018) Multiplexed CRISPR/Cas9 targeting of genes implicated in retinal regeneration and degeneration. Front Cell Dev Biol 6:16

    Article  Google Scholar 

  • Fang J, Chen TS, Pan QH, Wang Q (2018a) Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool Part B 330:242–246

    Article  CAS  Google Scholar 

  • Fang XL, Wu LM, Yang LY, Song LY, Cai J, Luo F, Wei J, Zhou LY, Wang DS (2018b) Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J Steroid Biochem Mol Biol 182:62–71

    Article  CAS  PubMed  Google Scholar 

  • Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC (2019) Programmable inhibition and detection of NA viruses using Cas13. Mol Cell 76:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao WJ, Chen C, Zhou TF, Yang SL, Gao B, Zhou H, Lian CJ, Wu ZZ, Qiu XJ, Yang XM, Alattar E, Liu WT, Su DY, Sun SL, Chen YL, Cheung KMC, Song YQ, Luk KKD, Chan D, Sham PC et al (2017) Rare coding variants in MAPK7 predispose to adolescent idiopathic scoliosis. Hum Mutat 38:1500–1510

    Article  CAS  PubMed  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto R, Saito T, Matsubara T, Yamaha E (2019) Microinjection of marine fish eggs. In: Liu C, Du Y (eds) Microinjection. Methods in molecular biology, vol 1874. Humana Press, New York, NY, pp 475–487

    Chapter  Google Scholar 

  • Granneman JG, Kimler VA, Zhang HM, Ye XQ, Luo XX, Postlethwait JH, Thummel R (2017) Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. eLife 6:22

    Article  Google Scholar 

  • Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9:588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S, Garcia M, Kahn E, Bergmire-Sweat D, Musser JM (1999) Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Q, Li C, Ying R, Lin H, Li J, Zhao Y, Cheng H, Zhou R (2019) Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish. Protein Cell 10:347–364

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  CAS  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai T, Saino K, Matsuda M (2015) Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Biophys Res Commun 467:109–114

    Article  CAS  PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ (2017) CRISPR-Cas: adapting to change. Science 356:9

    Article  CAS  Google Scholar 

  • Jansen R, van Embden JD, Gaastra W, Schouls LM (2002a) Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:23–33

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, van Embden JDA, Gaastra W, Schouls LM (2002b) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jiang DN, Yang HH, Li MH, Shi HJ, Zhang XB, Wang DS (2016) gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the nile tilapia. Mol Reprod Dev 83:497–508

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayo D, Zempo B, Tomihara S, Oka Y, Kanda S (2019) Gene knockout analysis reveals essentiality of estrogen receptor beta 1 (Esr2a) for female reproduction in medaka. Sci Rep 9:11

    Article  CAS  Google Scholar 

  • Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7:7301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Cho JY, Kim JW, Kim HC, Noh JK, Kim YO, Hwang HK, Kim WJ, Yeo SY, An CM, Park JY, Kong HJ (2019) CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 512:12

    Google Scholar 

  • Klaassen H, Wang YF, Adamski K, Rohner N, Kowalko JE (2018) CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 441:313–318

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng ZL, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting Type VI-D CRISPR effectors. Cell 173:665-676.e614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kossack ME, High SK, Hopton RE, Yen YL, Postlethwait JH, Draper BW (2019) Female sex development and reproductive duct formation depend on Wnt4a in zebrafish. Genetics 211:219–233

    Article  CAS  PubMed  Google Scholar 

  • Kratochwil CF, Liang YP, Gerwin J, Woltering JM, Urban S, Henning F, Machado-Schiaffino G, Hulsey CD, Meyer A (2018) Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:457–460

    Article  CAS  PubMed  Google Scholar 

  • Lau ES-W, Zhang Z, Qin M, Ge W (2016) Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6:37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CHK, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 109:17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie QP, Wang TR, Shi HJ, Sun LN, Zhou LY, Wang DS (2013) Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154:4814–4825

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Yang HH, Zhao J, Fang L, Shi H, Li M, Sun Y, Zhang X, Jiang D, Zhou LY, Wang DS (2014) Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591-U219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li MH, Sun YL, Zhao J, Shi HJ, Zeng S, Ye K, Jiang DN, Zhou LY, Sun LN, Tao WJ, Nagahama Y, Kocher TD, Wang DS (2015) A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in nile tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li SZ, Liu W, Li Z, Li WH, Wang Y, Zhou L, Gui JF (2017) greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 627:176–187

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu X, Dai S, Xiao H, Qi S, Li Y, Zheng Q, Jie M, Cheng CHK, Wang D (2020) Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol Life Sci 77:4921–4938

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Fan SH, Zhang YH, Xu M, Zhang HX, Yang YL, Lee AP, Woltering JM, Ravi V, Gunter HM, Luo W, Gao ZX, Lim ZW, Qin G, Schneider RF, Wang X, Xiong PW, Li G, Wang K, Min JM et al (2016) The seahorse genome and the evolution of its specialized morphology. Nature 540:395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Mei J, Li Z, Zhang X, Zhou L, Gui J-F (2017) Distinct and cooperative roles of amh and Dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 207:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB, Barbas CF III (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 94:5525–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Li CQ, Yu ZS, Huang P, Wu HG, Wei CX, Zhu NN, Shen Y, Chen YX, Zhang B, Deng WM, Jiao RJ (2012) Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genom 39:209–215

    Article  CAS  Google Scholar 

  • Liu PP, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, Mintzer E, Suresh S, Morrison K, Frazao JB, Bolukbasi MF, Ponnienselvan K, Luban J, Zhu LJ, Lawson ND, Wolfe SA (2019a) Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res 47:4169–4180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QF, Qi YH, Liang QL, Song J, Liu JM, Li WH, Shu YQ, Tao M, Zhang C, Qin QB, Wang J, Liu SJ (2019b) Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci China 62:1194–1202

    Article  CAS  Google Scholar 

  • Lu H, Cui Y, Jiang L, Ge W (2017) Functional analysis of nuclear estrogen receptors in zebrafish reproduction by genome editing approach. Endocrinology 158:2292–2308

    Article  CAS  PubMed  Google Scholar 

  • Luo DJ, Liu Y, Chen J, Xia XQ, Cao MG, Cheng B, Wang XJ, Gong WM, Qiu C, Zhang YS, Cheng CH, Zhu ZY, Hu W (2015) Direct production of XY(DMY-) sex reversal female medaka (Oryzias latipes) by embryo microinjection of TALENs. Sci Rep 5:14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Mueller-Lerch F, Fu F, Pearlberg J, Goebel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC et al (2008) Rapid “Open-Source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:26

    Article  CAS  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas C, White MF, Yakunin AF, Yan W et al (2019) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mandal BK, Chen H, Si Z, Hou X, Yang H, Xu X, Wang J, Wang C (2020) Shrunk and scattered black spots turn out due to MC1R knockout in a white-black Oujiang color common carp (Cyprinus carpio var. color). Aquaculture 518:734822

    Article  CAS  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Gui JF (2015) Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China 58:124–136

    Article  CAS  Google Scholar 

  • Meng XD, Noyes MB, Zhu LHJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo ES, Cheng QN, Reshetnyak AV, Schlessinger J, Nicoli S (2017) Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc Natl Acad Sci USA 114:12027–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJM, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJM, Diez-Villasenor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501–1501

    Article  CAS  PubMed  Google Scholar 

  • Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H (2018) Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 14:e1007260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M (2015) foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 349:328–331

    Article  CAS  PubMed  Google Scholar 

  • Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki Y, Okuda Y, Naruse K, Saya H (2020) Identification of kit-ligand a as the gene responsible for the medaka pigment cell mutant few melanophore. Genes Genomes Genet 10:311–319

    CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  PubMed  Google Scholar 

  • Pei WH, Xu LS, Huang SC, Pettie K, Idol J, Rissone A, Jimenez E, Sinclair JW, Slevin C, Varshney GK, Jones M, Carrington B, Bishop K, Huang H, Sood R, Lin S, Burgess SM (2018) Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regen Med 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  CAS  PubMed  Google Scholar 

  • Prykhozhij SV, Cordeiro-Santanach A, Caceres L, Berman JN (2020) Genome editing in zebrafish using high-fidelity Cas9 nucleases: choosing the right nuclease for the task. Methods Mol Biol 2115:385–405

    Article  CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi YP, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Yamamoto H (2001) Development of pigment cells in the brain of Ascidian tadpole larvae: insights into the origins of vertebrate pigment cells. Pigment Cell Res 14:428–436

    Article  CAS  PubMed  Google Scholar 

  • Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu XJ, McFaline-Figueroa JL, Corbo JC, Trapnell C, Parichy DM (2019) Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 8:29

    Article  Google Scholar 

  • Schartl M, Larue L, Goda M, Bosenberg MW, Hashimoto H, Kelsh RN (2016) What is a vertebrate pigment cell? Pigment Cell Melanoma Res 29:8–14

    Article  PubMed  Google Scholar 

  • Scherer S, Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 76:4951–4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schornack S, Meyer A, Romer P, Jordan T, Lahaye T (2006) Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163:256–272

    Article  CAS  PubMed  Google Scholar 

  • Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB (2015) Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 12:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu T, Zhai G, Pradhan A, Olsson PE, Yin Z (2020) Zebrafish cyp17a1 knockout reveals that androgen-mediated signaling is important for male brain sex differentiation. Gen Comp Endocrinol 295:113490

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

  • Spicer OS, Wong TT, Zmora N, Zohar Y (2016) Targeted mutagenesis of the hypophysiotropic Gnrh3 in zebrafish (Danio rerio) reveals no effects on reproductive performance. PLoS ONE 11:e0158141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spiewak JE, Bain EJ, Liu J, Kou K, Sturiale SL, Patterson LB, Diba P, Eisen JS, Braasch I, Ganz J, Parichy DM (2018) Evolution of endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet 14:e1007538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi A, Kanda S, Abe T, Oka Y (2016) Evolution of the hypothalamic-pituitary-gonadal axis regulation in vertebrates revealed by knockout medaka. Endocrinology 157:3994–4002

    Article  CAS  PubMed  Google Scholar 

  • Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin IT, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5:4157

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Chen Y, Wang L, Yin Y, Li G, Guo Y, Liu Y, Lin H, Cheng CHK, Liu X (2018) Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol Reprod 98:227–238

    Article  PubMed  Google Scholar 

  • Teng F, Cui TT, Feng GH, Guo L, Xu K, Gao QQ, Li TD, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4:15

    Article  CAS  Google Scholar 

  • Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J (2018) Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 11:8

    Article  CAS  Google Scholar 

  • Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng XD, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  CAS  PubMed  Google Scholar 

  • Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Parka SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bebber F, Hruscha A, Willem M, Schmid B, Haass C (2013) Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes. J Neurochem 127:471–481

    Article  PubMed  CAS  Google Scholar 

  • Varshney GK, Pei WH, LaFave MC, Idol J, Xu LS, Gallardo V, Carrington B, Bishop K, Jones M, Li MY, Harper U, Huang SC, Prakash A, Chen WB, Sood R, Ledin J, Burgess SM (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25:1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Lu Y, Zhang Y, Ning ZM, Li Y, Zhao Q, Lu HY, Huang R, Xia XQ, Feng Q, Liang XF, Liu KY, Zhang L, Lu TT, Huang T, Fan DL, Weng QJ, Zhu CR, Lu YQ, Li WJ et al (2015) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47:625–631

    Article  CAS  PubMed  Google Scholar 

  • Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR (2017) Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 422:33–46

    Article  CAS  PubMed  Google Scholar 

  • Williams JS, Hsu JY, Rossi CC, Artinger KB (2018) Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration. Dev Biol 444:S274–S286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LM, Yang P, Luo F, Wang D, Zhou L (2016a) R-spondin1 signaling pathway is required for both the ovarian and testicular development in a teleosts, Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 230:177–185

    Article  PubMed  CAS  Google Scholar 

  • Wu LM, Wu FR, Xie L, Wang DS, Zhou LY (2016b) Synergistic role of beta-catenin1 and 2 in ovarian differentiation and maintenance of female pathway in Nile tilapia. Mol Cell Endocrinol 427:33–44

    Article  CAS  PubMed  Google Scholar 

  • Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR (2018) A rapid method for directed gene knockout for screening in G0 zebrafish. Dev Cell 46:112–125

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Song W, Zhang Z, Ge W (2020) Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish—a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development. 147:dev182758

    Article  CAS  PubMed  Google Scholar 

  • Xie QP, He X, Sui YN, Chen LL, Sun LN, Wang DS (2016) Haploinsufficiency of SF-1 causes female to male sex reversal in nile tilapia, Oreochromis niloticus. Endocrinology 157:2500–2514

    Article  CAS  PubMed  Google Scholar 

  • Xiong ST, Wu J, Jing J, Huang P, Li Z, Mei J, Gui JF (2017a) Loss of stat3 function leads to spine malformation and immune disorder in zebrafish. Sci Bull 62:185–196

    Article  CAS  Google Scholar 

  • Xiong ST, Mei J, Huang PP, Jing J, Li Z, Kang JL, Gui JF (2017b) Essential roles of stat5.1/stat5b in controlling fish somatic growth. J Genet Genomics 44:577–585

    Article  PubMed  Google Scholar 

  • Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G, Zhang Y, Huo L, Zhao Z, Cao D, Lu C, Li C, Zhou Y, Liu Z, Fan Z, Shan G et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Yan YL, Desvignes T, Bremiller R, Wilson C, Dillon D, High S, Draper B, Buck CL, Postlethwait J (2017) Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev Dyn 246:925–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LX, Feng HW, Wang FL, Lu BY, Liu XY, Sun LN, Wang DS (2019) Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in nile tilapia. J Steroid Biochem Mol Biol 191:105379

    Article  CAS  PubMed  Google Scholar 

  • Yang LY, Li YL, Wu Y, Sun SH, Song Q, Wei J, Sun LN, Li MH, Wang DS, Zhou LY (2020) Rln3a is a prerequisite for spermatogenesis and fertility in male fish. J Steroid Biochem Mol Biol 197:12

    Article  CAS  Google Scholar 

  • Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y (2012) An immune-related gene evolved into the Master Sex-Determining Gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Yano A, Nicol B, Jouanno E, Guiguen Y (2014) Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar Biotechnol 16:243–250

    Article  CAS  Google Scholar 

  • Yin Y, Tang H, Yun L, Yu C, Li G, Liu X, Lin H (2017) Targeted disruption of aromatase reveals dual functions of cyp19a1a during sex differentiation in zebrafish. Endocrinology 158:3030–3041

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Zhang D, Liu W, Wang J, Liu X, Zhou C, Gui J, Xiao W (2018) Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 9:24320–24334

    Article  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai G, Shu T, Xia Y, Jin X, He J, Yin Z (2017) Androgen signaling regulates the transcription of anti-Mullerian hormone via synergy with SRY-related protein SOX9A. Sci Bull 62:197–203

    Article  CAS  Google Scholar 

  • Zhang Z, Lau SW, Zhang L, Ge W (2015a) Disruption of zebrafish folliclestimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 156:3747–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhu B, Ge W (2015b) Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76–98

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y (2016) Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang H, Zhao G, Tadafumi Y, Hugo V, Yan H, Raman S, Kevin B, Valerie M, John A (2017) ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet 13:e1006481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang QF, Ye D, Wang HP, Wang YQ, Hu W, Sun YH (2020a) Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction. Endocrinology 161:20

    Google Scholar 

  • Zhang XC, Wang F, Dong ZJ, Dong XH, Chi J, Chen HG, Zhao QS, Li KB (2020b) A new strain of yellow catfish carrying genome edited myostatin alleles exhibits double muscling phenotype with hyperplasia. Aquaculture 523:10

    Google Scholar 

  • Zhi LI, Zhou L, Zhang J, Wang Y, Gui JF (2016) A fast and efficient microinjection method in the fertilized eggs of teleost fish with adhesive eggs. Acta Hydrobiol Sin 40:76–82

    Google Scholar 

  • Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6:22953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangzhou Science and Technology Project [No. 201803020017], National Natural Science Foundation of China [No. 31902427] and China Postdoctoral Science Foundation [No. 2018M631016].

Author information

Authors and Affiliations

Authors

Contributions

JGL, WYF, JRH, and SZL reviewed literature and wrote the manuscript, improved and corrected the manuscript. The manuscript has been approved by all authors.

Corresponding author

Correspondence to Jianguo Lu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Animal and human rights statement

No animal and human rights are involved in this article.

Additional information

Edited by Xin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Fang, W., Huang, J. et al. The application of genome editing technology in fish. Mar Life Sci Technol 3, 326–346 (2021). https://doi.org/10.1007/s42995-021-00091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-021-00091-1

Keywords

Navigation