Skip to main content

Advertisement

Log in

Microorganisms from deep-sea hydrothermal vents

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source in green or blue: CO2, CH4, (CH2O)n; Electron donors in red:·H2, H2S, S0, NH4+,Fe2+; Electron acceptors in black:·O2, S0, SO42−, NO3, Fe3+

Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adair FW, Gundersen K (1969) Chemoautotrophic sulfur bacteria in the marine environment. I. Isolation, cultivation, and distribution. Can J Microbiol 15:345–353

    CAS  PubMed  Google Scholar 

  • Adams MM, Hoarfrost AL, Bose A, Joye SB, Girguis PR (2013) Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol 14(4):110

    Google Scholar 

  • Adam N, Perner M (2018) Microbially mediated hydrogen cycling in deep-sea hydrothermal vents. Front Microbiol 9:2873

    PubMed  PubMed Central  Google Scholar 

  • Akerman NH, Butterfield DA, Huber JA (2013) Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 4:185–185

    PubMed  PubMed Central  Google Scholar 

  • Alain K, Marteinsson VT, Miroshnichenko ML, Bonchosmolovskaya EA, Prieur D, Birrien JL (2002a) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    CAS  PubMed  Google Scholar 

  • Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Gerard R, Cueff V, Cambonbonavita M (2002b) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323

    CAS  PubMed  Google Scholar 

  • Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval J, Lesongeur F, Raguenes G, Crassous P, Querellou J, Cambonbonavita M (2002c) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628

    CAS  PubMed  Google Scholar 

  • Alain K, Rolland S, Crassous P, Lesongeur F, Zbinden M, Le Gall C, Godfroy A, Page A, Juniper SK, Cambonbonavita M, Duchiron F, Querellou J (2003) Desulfurobacterium crinifex sp.nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. Extremophiles 7:361–370

    CAS  PubMed  Google Scholar 

  • Alain K, Callac N, Guegan M, Lesongeur F, Crassous P, Cambonbonavita M, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    CAS  PubMed  Google Scholar 

  • Alain K, Postec A, Grinsard E, Lesongeur F, Prieur D, Godfroy A (2010) Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a mid-atlantic ridge hydrothermal vent. Int J Syst Evol Microbiol 60:33–38

    CAS  PubMed  Google Scholar 

  • Alazard D, Dukan S, Urios A, Frederic V, Bouabida N, Morel F, Thomas P, Garcia J, Ollivier B (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178

    CAS  PubMed  Google Scholar 

  • Amend AS (2014) From dandruff to deep-sea vents: malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277

    PubMed  PubMed Central  Google Scholar 

  • Amend JP, Mccollom TM, Hentscher M, Bach W (2011) Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta 75:5736–5748

    CAS  Google Scholar 

  • Anantharaman K, Breier JA, Sheik CS, Dick G (2013) Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc Natl Acad Sci USA 110:330–335

    CAS  PubMed  Google Scholar 

  • Antoine E, Cilia V, Meunier JR, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123

    CAS  PubMed  Google Scholar 

  • Audiffrin C, Cayol J, Joulian C, Casalot L, Thomas P, Garcia J (2003) Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590

    CAS  PubMed  Google Scholar 

  • Baker BJ, Lesniewski RA, Dick GJ (2012) Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J 6:2269–2279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbier G, Godfroy A, Meunier J, Querellou J, Cambon M, Lesongeur F, Grimont PAD, Raguenes G (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Evol Microbiol 49:1829–1837

    CAS  Google Scholar 

  • Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB (2017) In-situ incubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol 19:1322–1337

    CAS  PubMed  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310

    CAS  PubMed  Google Scholar 

  • Bellack A, Huber H, Rachel R, Wanner G, Wirth R (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Int J Syst Evol Microbiol 61:1239–1245

    PubMed  Google Scholar 

  • Biddle JF, Cardman Z, Mendlovitz HP, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031

    CAS  PubMed  Google Scholar 

  • Birrien J, Zeng X, Jebbar M, Cambonbonavita M, Querellou J, Oger P, Bienvenu N, Xiao X, Prieur D (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2881

    CAS  PubMed  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    CAS  PubMed  Google Scholar 

  • Boden R (2017a) Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int J Syst Evol Microbiol 67:3919–3928

    CAS  PubMed  Google Scholar 

  • Boden R, Scott KM, Williams J, Russel S, Antonen K, Rae AW, Hutt LP (2017b) An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospria. Int J Syst Evol Microbiol 67:1140–1151

    CAS  PubMed  Google Scholar 

  • Bonchosmolovskaya EA (1994) Bacterial sulfur reduction in hot vents. FEMS Microbiol Rev 15:65–77

    CAS  Google Scholar 

  • Bonchosmolovskaya EA, Perevalova AA, Kolganova TV, Rusanov II, Jeanthon C, Pimenov N (2011) Activity and distribution of thermophilic prokaryotes in hydrothermal fluid, sulfidic structures, and sheaths of Alvinellids (East Pacific Rise, 13°N). Appl Environ Microbiol 77:2803–2806

    CAS  Google Scholar 

  • Bourbonnais A, Lehmann MF, Butterfield DA, Juniper SK (2012) Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and ammonium. Geochem Geophys Geosyst 13:Q02T01

    Google Scholar 

  • Bourbonnais A, Juniper SK, Butterfield DA, Anderson RE, Lehmann MF (2014) Diversity and abundance of bacteria and nirS-encoding denitrifiers associated with the Juan de fuca ridge hydrothermal system. Ann Microbiol 64:1691–1705

    CAS  Google Scholar 

  • Bowles MW, Nigro LM, Teske AP, Joye SB (2012) Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments. Front Microbiol 3:377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton W, Nelson B, Schrenk M (2012) Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol 2:268

    PubMed  PubMed Central  Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol Rev 11:1588–1600

    Google Scholar 

  • Butterfield DA, Jonasson IR, Massoth GJ, Feely RA, Roe KK, Embley RE, Holden JF, McDuff RE, Lilley JR (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philos Trans R Soc Lond A 355:369–386

    CAS  Google Scholar 

  • Byrne N, Strous M, Crepeau V, Kartal B, Birrien J, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten MSM, Prieur D, Godfroy A (2009) Presence and activity of anaerobic ammonium-oxidizin g bacteria at deep-sea hydrothermal vents. ISME J 3:117–123

    CAS  PubMed  Google Scholar 

  • Callac N, Oger P, Lesongeur F, Rattray JE, Vannier P, Michoud G, Beauverger M, Gayet N, Rouxel O, Jebbar M, Godfroy A (2016) Pyrococcus kukulkanii sp. nov., a hyperthermophilic, piezophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 66:3142–3149

    CAS  PubMed  Google Scholar 

  • Calvez TL, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    PubMed  PubMed Central  Google Scholar 

  • Cao H, Shao Z, Li J, Zhang W, Qian PY (2015) Phylogenetic diversity of nitrogen-utilizing genes in hydrothermal chimneys from 3 middle ocean ridges. Extremophiles 19:1173–1182

    PubMed  Google Scholar 

  • Cao J, Gayet N, Zeng X, Shao Z, Jebbar M, Alain K (2016) Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 66:3904–3911

    CAS  PubMed  Google Scholar 

  • Cao J, Birien T, Gayet N, Huang Z, Shao Z, Jebbar M, Alain K (2017) Desulfurobacterium indicum sp. nov., a thermophilic sulfur-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 67:1665–1668

    CAS  PubMed  Google Scholar 

  • Cerqueira T, Barroso C, Froufe H, Conceição E, Raul B (2018) Metagenomic signatures of microbial communities in deep-sea hydrothermal sediments of azores vent fields. Microb Ecol 76:387–403

    CAS  PubMed  Google Scholar 

  • Cha I, Roh SW, Kim S, Hong H, Lee H, Lim W, Rhee S (2013) Desulfotomaculum tongense sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a hydrothermal vent sediment collected from the Tofua Arc in the Tonga Trench. Antonie Van Leeuwenhoek 104:1185–1192

    CAS  PubMed  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’, MAR). Chem Geol 191:345–359

    CAS  Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Andel THV (1979) Submarine thermal sprirngs on the galapagos rift. Science 203:1073–1083

    CAS  PubMed  Google Scholar 

  • Cowen JP, Wen XY, Jones RD, Thomson RE (1998) Elevated NH4+ in a neutrally buoyant hydrothermal plume. Deep Sea Res Part A Oceanogr Res Pap 45:1891–1902

    CAS  Google Scholar 

  • Crespomedina M, Chatziefthimiou AD, Cruzmatos R, Pérez-Rodríguez I, Barkay T, Lutz RA, Starovoytov V, Vetriani C (2009) Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 59:1497–1503

    CAS  Google Scholar 

  • Dalla Vecchia E, Suvorova EI, Bernier-Latmani R (2013) Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology 12:48–61

    PubMed  Google Scholar 

  • Dalmasso C, Oger P, Selva G, Courtine D, Lharidon S, Garlaschelli A, Roussel EG, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Karine A (2016) Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst Appl Microbiol 39:440–444

    CAS  PubMed  Google Scholar 

  • Demey LM, Miller CR, Manzella MP, Spurbeck RR, Sandhu SK, Reguera G, Kashefi K (2017) The draft genome of the hyperthermophilic archaeon Pyrodictium delaneyi strain hulk, an iron and nitrate reducer, reveals the capacity for sulfate reduction. Stand Genomic Sci 12:47

    PubMed  PubMed Central  Google Scholar 

  • Dhillon A, Teske A, Dillon JG, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dick GJ (2019) The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 17:271–283

    CAS  PubMed  Google Scholar 

  • Dobrinski KP, Longo DL, Scott KM (2005) The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 187:5761–5766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dombrowski N, Seitz KW, Teske A, Baker BJ (2017) Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5:106–106

    PubMed  PubMed Central  Google Scholar 

  • Dong Y, Sanford RA, Fouke BW (2016) Orenia metallireducens sp. nov. strain Z6, a novel metal-reducing member of the phylum Firmicutes from the deep subsurface. Appl Environ Microbiol 82:6440–6453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durand P, Reysenbach A, Prieur D, Pace NR (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159:39–44

    CAS  Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Feoxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the loihi seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D, Rentz JA, Lilburn T, Davis RE, Aldrich HC, Chan CS, Moyer CL (2007) A novel lineage of proteobacteria involved in formation of marine fe-oxidizing microbial mat communities. PLoS ONE 2:e667

    PubMed  PubMed Central  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson VT, Barbier G (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    CAS  Google Scholar 

  • Flores GE, Wagner ID, Liu Y, Reysenbach AL (2012) Distribution, abundance, and diversity patterns of the thermoacidophilc “deep-sea hydrothermal vent euryarchaeota 2.” Front Microbiol 3:1–17

    Google Scholar 

  • Frank KL, Rogers DR, Olins HC, Vidoudez C, Girguis PR (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7:1391–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    CAS  PubMed  Google Scholar 

  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, Pyrococcus abyssi. J Bacteriol 185:3888–3894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannelli D, Chung M, Staley J, Starovoytov V, Bris NL, Vetriani C (2016) Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int J Syst Evol Microbiol 66:2697–2701

    CAS  PubMed  Google Scholar 

  • González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    PubMed  Google Scholar 

  • Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 4:503–516

    Google Scholar 

  • Gotz D, Banta AB, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach A (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    CAS  PubMed  Google Scholar 

  • Grosche A, Sekaran H, Pérezrodríguez I, Starovoytov V, Vetriani C (2015) Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 65:1144–1150

    CAS  Google Scholar 

  • Handley KM, Lloyd JR (2013) Biogeochemical implications of the ubiquitous colonization of marine habitat and redox gradients by Marinobacter species. Front Microbiol 4:136

    PubMed  PubMed Central  Google Scholar 

  • Hansen M, Perner M (2015) A novel hydrogen oxidizer amidst the sulfur oxidizing Thiomicrospira lineage. ISME J 9:696–707

    CAS  PubMed  Google Scholar 

  • Hansen M, Perner M (2016) Hydrogenase gene distribution and H2 consumption ability within the Thiomicrospira lineage. Front Microbiol 7:99

    PubMed  PubMed Central  Google Scholar 

  • He Y, Xiao X, Wang F (2013) Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oilimmersed chimney from Guaymas Basin. Front Microbiol 4:148

    PubMed  PubMed Central  Google Scholar 

  • He T, Li H, Zhang X (2017) Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus-host interactions. mBio 8:E00893-E1817

    PubMed  PubMed Central  Google Scholar 

  • Hu Q, Wang S, Lai Q, Shao Z, Jiang L (2020) Sulfurimonas indica sp. nov., a hydrogen- and sulfur- oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.004575

    Article  PubMed  Google Scholar 

  • Hu S, Barnes S, Pages A, Parr J, Binns RA, Verrall M, Quadir Z, Rickard WDA, Liu W, Fougerouse D, Grice K, Schoneveld L, Ryan C, Paterson DL (2020) Life on the edge: microbial biomineralization in an arsenic-and lead-rich deep-sea hydrothermal vent. Chem Geol 533:119438

    CAS  Google Scholar 

  • Huber H, Thomm M, Konig H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    PubMed  Google Scholar 

  • Huber HHM, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:27–28

    Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805

    CAS  PubMed  Google Scholar 

  • Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 35:422–424

    CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1988) Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl Environ Microbiol 54:1203–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919

    CAS  PubMed  Google Scholar 

  • Jeanthon C, Lharidon S, Reysenbach A, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Evol Microbiol 49:583–589

    Google Scholar 

  • Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Bacteriol 52:765–772

    CAS  Google Scholar 

  • Jolivet E, Corre E, Lharidon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea Hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    CAS  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Jiang L, Liu X, Dong C, Huang Z, Cambon-Bonavita MA, Alain K, Gu L, Wang S, Shao Z (2020) Candidatus Desulfobulbus rimicarensis, an uncultivated deltaproteobacterial epibionts from the deep-sea hydrothermal vent shrimp Rimicaris exoculata. Appl Environ Microbiol 86:e02549-19

    PubMed  PubMed Central  Google Scholar 

  • Jiang L, Lyu J, Shao Z (2017) Sulfur metabolism of Hydrogenovibrio thermophilus strain s5 and its adaptations to deep-sea hydrothermal vent environment. Front Microbiol 8:2513

    PubMed  PubMed Central  Google Scholar 

  • Jones RM, Dangelo T, Orcutt BN (2020) Using cathodic poised potential experiments to investigate extracellular electron transport in the crustal deep biosphere of North Pond. Mid-Atlantic Ridge Front Environ Sci 8:11

    Google Scholar 

  • Jungbluth SP, Amend JP, Rappe MS (2017) Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci Data 4:170037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life science 301:934–934

  • Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach AL, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728

    CAS  PubMed  Google Scholar 

  • Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the geobacteraceae from the" bag city" hydrothermal vent. Appl Environ Microbiol 69:2975–2984

    Google Scholar 

  • Kato S, Hara K, Kasai H, Teramura T, Sunamura M, Ishibashi J, Kakegawa T, Yamanaka T, Kimura H, Marumo K, Urabe T, Yamagishi A (2009) Spatial distribution, diversity and composition of bacterial communities in sub-seafloor fluids at a deep-sea hydrothermal field of the Suiyo Seamount. Deep Sea ResPart A Oceanogr Res Pap 56:1844–1855

    CAS  Google Scholar 

  • Kaye JZ, Baross JA (2000) High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol 32:249–260

    CAS  PubMed  Google Scholar 

  • Kaye JZ, Márquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments Int J Syst Evol Microbiol 54:499–511

  • Kurr M, Huber R, Konig H , Jannasch H W,Fricke H,Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 C Arch Microbiol 156:239–247

  • Lai Q, Cao J, Dupont S, Shao Z, Jebbar M, Alain K (2016) Thermodesulfatator autotrophicus sp. nov., a thermophilic sulfate-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 66:3978–3982

    CAS  PubMed  Google Scholar 

  • Lam P, Cowen JP, Jone RD (2004) Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol Ecol 47:191–206

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 48:701–711

    CAS  Google Scholar 

  • L’Haridon S, Reysenbach AL, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003a) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Reysenbach A, Banta AB, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003b) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Reysenbach A, Tindall BJ, Schonheit P, Banta AB, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006a) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S, Schumann P, Stackebrandt E, Bonchosmolovskaya EA, Jeanthon C (2006b) Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 56:1047–1053

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Jiang L, Alain K, Chalopin M, Jebbar M (2013) Kosmotoga pacifica sp. nov., a thermophilic chemoorganoheterotrophic bacterium isolated from an East Pacific hydrothermal sediment. Extremophiles 18:81–88

    PubMed  Google Scholar 

  • Li G, Zeng X, Liu X, Zhang X, Shao Z (2016) Wukongibacter baidiensis gen. nov., sp. nov., an anaerobic bacterium isolated from hydrothermal sulfides, and proposal for the reclassification of the closely related Clostridium halophilum and Clostridium caminithermale within Maledivibacter gen. nov. and Paramaledivibacter gen. nov., respectively. Int J Syst Evol Microbiol 66:4355–4361

    CAS  PubMed  Google Scholar 

  • Li M, Jain S, Dick GJ (2016) Genomic and transcriptomic resolution of organic matter utilization among deep-sea bacteria in guaymas basin hydrothermal plumes. Front Microbiol 7:1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tang K, Zhang L, Zhao Z, Xie X, Chen C-TA, Wang D, Jiao N, Zhang Y (2018) Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem. Front Microbiol 9:2718

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zeng X, Qiu D, Zhang Z, Chen J, Shao Z (2019) Dissimilatory iron [Fe (III)] reduction by a novel fermentative, piezophilic bacterium Anoxybacter fermentans DY22613T isolated from east pacific rise hydrothermal sulfides. Geomicrobiol J 36:291–302

    CAS  Google Scholar 

  • Li X, Zeng X, Qiu D, Zhang Z, Zhang X, Shao Z (2020) Extracellular electron transfer in fermentative bacterium Anoxybacter fermentans DY22613T isolated from deep-sea hydrothermal sulfides. Sci Total Environ 722:137723

    CAS  PubMed  Google Scholar 

  • Lim JK, Kim YJ, Yang JA, Namirimu T, Yang SH, Park MJ, Kwon YM, Lee HS, Kang SG, Lee JH, Kyoung KK (2020) Thermococcus indicus sp. nov., a Fe(III)-reducing hyperthermophilic archaeon isolated from the onnuri vent field of the central indian ocean ridge. J Microbiol 58:260–267

    CAS  PubMed  Google Scholar 

  • Lin TJ, Breves EA, Dyar MD, Ver Eecke H, Jamieson J, Holden J (2014) Magnetite formation from ferrihydrite by hyperthermophilic archaea from E ndeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys. Geobiology 12:200–211

    PubMed  Google Scholar 

  • Lin TJ, Sebae GK, Jung JH, Jung DH, Park CS, Holden JF (2016) Pyrodictium delaneyi sp. nov., a hyperthermophilic autotrophic archaeon that reduces Fe (III) oxide and nitrate. Int J Syst Evol Microbiol 66:3372

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649

    CAS  PubMed  Google Scholar 

  • Liu X, Jiang L, Hu Q, Lyu J, Shao Z (2020) Thiomicrorhabdus indica sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Microbiol 70:234–239

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia P, Philippe H, Gail F, Moreira D. (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA:697–702

  • Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, Farasin J, Bienvenu N, Baudoux A-C, Michoud G, Jebbar M, Geslin C (2015) ‘Ménage à trois’: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17:3278–3288

    CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Pang K (2014) Fungi from substrates in marine environment. In: Misra JK, Tewari JP, Deshmukh SK,Vágvölgyi C (eds) Fungi from different substrates. CRC press, Boca Raton, pp 97–114

    Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  PubMed  Google Scholar 

  • Makita H (2018) Iron-oxidizing bacteria in marine environments: recent progresses and future directions. World J Microbiol Biotechnol 34:110–110

    PubMed  Google Scholar 

  • Makita H, Nakagawa S, Miyazaki M, Nakamura K, Inagaki F, Takai K (2012) Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc. Arch Microbiol 194:785–794

    CAS  PubMed  Google Scholar 

  • Makita H, Tanaka E, Mitsunobu S, Miyazaki M, Takai K (2016) Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov. Arch Microbiol 199:335–346

    PubMed  Google Scholar 

  • Mandernack KW, Tebo BM (1993) Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim Cosmochim Acta 57:3907–3923

    CAS  Google Scholar 

  • Manzella MP, Reguera G, Kashefi K (2013) Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism. Appl Environ Microbiol 79:4694–4700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mardanov AV, Slododkina GB, Slobodkin AI, Beletsky AV, Gavrilov SN, Kublanov IV, Bonch-Osmolovskaya EA, Skryabin KG, Ravin NV (2015) The geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Appl Environ Microbiol 81:1003–1012

    PubMed  PubMed Central  Google Scholar 

  • Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV (2016) Genome Analysis of Thermosulfurimonas dismutans, the first thermophilic sulfur-disproportionating bacterium of the Phylum Thermodesulfobacteria. Front Microbiol 7:950–950

    PubMed  PubMed Central  Google Scholar 

  • Marteinsson VT (1999) Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251

    CAS  PubMed  Google Scholar 

  • Marteinsson VT, Bjornsdottir SH, Bienvenu N, Kristjansson JK, Birrien J (2010) Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J Syst Evol Microbiol 60:2729–2734

    CAS  PubMed  Google Scholar 

  • McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS (2020) Validating the Cyc2 neutrophilic iron oxidation pathway using metaomics of Zetaproteobacteria iron mats at marine hydrothermal vents. Msystem 5:e00553-e1519

    Google Scholar 

  • Mccliment EA, Voglesonger KM, Oday PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage. Environ Microbiol 8:114–125

    CAS  PubMed  Google Scholar 

  • McCollom TM (2007) Geochemical constraints on source of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7:933–950

    CAS  PubMed  Google Scholar 

  • McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol 62:954–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta MPB, David A, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier D, Bach W, Girguis PR, Grubervodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A (2016) Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol 18:4348–4368

    PubMed  Google Scholar 

  • Meier D, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, Amann R, Meyerdierks A (2017) Niche partitioning of diverse sulfur-oxidizing bacteria at Hydrothermal vents. ISME J 11:1545–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier D, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, Petersen S, Amann R, Meyerdierks A (2019) Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol 21:682–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Rev Microbiol 12:797–808

    CAS  Google Scholar 

  • Mercier C, Lossouarn J, Nesbo CL, Haverkamp TH, Baudoux A, Jebbar M, Bienvenu N, Thiroux S, Dupont S, Geslin C (2018) Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol 20:577–587

    CAS  PubMed  Google Scholar 

  • Merkel AY, Huber JA, Chernyh NA, Bonchosmolovskaya EA, Lebedinsky AV (2013) Detection of putatively thermophilic anaerobic methanotrophs in diffuse hydrothermal vent fluids. Appl Environ Microbiol 79:915–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minic Z, Thongbam PD (2011) The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 9:719–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mino S, Kudo H, Arai T, Sawabe T, Takai K, Nakagawa S (2014) Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol 64:3195–3201

    CAS  PubMed  Google Scholar 

  • Mino S, Yoneyama N, Nakagawa S, Takai K, Sawabe T (2018) Enrichment and genomic characterization of a N2O-reducing chemolithoautotroph from a deep-sea hydrothermal vent. Front Bioeng Biotechnol 6:184

  • Miroshnichenko ML, Kostrikina N, Lharidon S, Jeanthon C, Hippe H, Stackebrandt E, Bonchosmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Slobodkin AI, Kostrikina NA, Lharidon S, Nercessian O, Spring S, Stackebrandt E, Bonchosmolovskaya EA, Jeanthon C (2003a) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonchosmolovskaya EA (2003b) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Lharidon S, Jeanthon C, Antipov A, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonchosmolovskaya EA (2003c) Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Lharidon S, Nercessian O, Antipov AN, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Jeanthon C (2003d) Vulcanithermus mediatlanticus gen. nov., sp nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Lharidon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45

    CAS  PubMed  Google Scholar 

  • Miyazaki J, Ikuta T, Watsuji T, Abe M, Yamamoto M, Nakagawa S, Takaki Y, Nakamura K, Takai K (2020) Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica. ISME J 14:1–17

  • Mora M, Bellack A, Ugele M, Hopf J, Wirth R (2014) The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms. Appl Environ Microbiol 80:4764–4770

    PubMed  PubMed Central  Google Scholar 

  • Mori JF, Scott JJ, Hager KW, Moyer CL, Küsel K, Emerson D (2017) Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea Bivora, gen. nov., sp. nov. ISME J 11:2624–2636

    PubMed  PubMed Central  Google Scholar 

  • Mori K, Kakegawa T, Higashi Y, Nakamura K, Maruyama A, Hanada S (2004) Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int J Syst Evol Microbiol 54:1561–1566

    CAS  PubMed  Google Scholar 

  • Mori K, Suzuki K, Urabe T, Sugihara M, Tanaka K, Hamada M, Hanada S (2011) Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales. Int J Syst Bacteriol 61:2412–2418

  • Mori K, Yamaguchi K, Hanada S (2018) Sulfurovum denitrificans sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing epsilonproteobacterium isolated from a hydrothermal field. Int J Syst Evol Microbiol 68:2183–2187

    CAS  PubMed  Google Scholar 

  • Moussard H, L’haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227-233

  • Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C (2006) Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13°N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol 58:449–463

    CAS  PubMed  Google Scholar 

  • Nagata R, Takaki Y, Tame A, Nunoura T, Muto H, Mino S, Sawayama S, Takai K, Nakagawa S (2017) Lebetimonas natsushimae sp. nov., a novel strictly anaerobic, moderately thermophilic chemoautotroph isolated from a deep-sea hydrothermal vent polychaete nest in the Mid-Okinawa Trough. Syst Appl Microbiol 40:352–356

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K, Sako Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the e-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933

    CAS  PubMed  Google Scholar 

  • Neely C, Khalil CB, Cervantes A, Diaz R, Escobar A, Ho K, Hoefler S, Smith H, Abuyen K, Savalia P, Nealson KH, Emerson D, Tully BJ, Barco RA, Amend JP (2018) Genome sequence of Hydrogenovibrio sp. strain SC-1, a chemolithoautotrophic sulfur and iron oxidizer. Genome Announc 6:e01581-e11517

    PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007a) Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 57:2360–2364

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007b) Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 57:467–471

    CAS  PubMed  Google Scholar 

  • Nunoura T, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2008) Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 58:676–681

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y (2008) Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Troug. Int J Syst Evol Microbiol 58:659–665

    CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H, Hirai M, Miyazaki M, Takai K (2014) Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS ONE 19:e104959

    Google Scholar 

  • Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, Mori K, Kato Y, Miyazaki M, Shimamura S, Yanagawa K, Shuto A, Ohkouchi N, Fujita N, Takaki Y, Atomi H, Takai K (2018) A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 359:559–563

    CAS  PubMed  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards K (2011) Microbial ecology of the dark ocean above, at, and below the Seafloor. Microbiol Mol Biol Rev 75:361–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortmann ACS, Curtis A (2005) High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. Deep Sea Res. Part I Oceanogr Res Pap 52:1515–1527

    Google Scholar 

  • Perez N, Cardenas R, Martin O, Michel L (2013) The potential for photosynthesis in Hydrothermal vents: a new avenue for life in the universe? J Astrophys Space Sci 346:327–331

    CAS  Google Scholar 

  • Perezrodriguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C (2010) Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 60:1182–1186

    CAS  Google Scholar 

  • Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S (2013) Linking geology, fluid chemistry, and microbial activity of basaltand ultramafic-hosted deep-sea hydrothermal vent environments. Geobiol 11:340–355

    CAS  Google Scholar 

  • Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, Hourdez S, Girguis PR, Wankel SD, Barbe V, Pelletier E, Fink D, Borowski C, Bach W, Dubilier N (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476(7359):176–180

    CAS  PubMed  Google Scholar 

  • Pillot G, Frouin E, Pasero E, Godfroy A, Combetblanc Y, Davidson S, Liebgott P (2018) Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. Bioresour Technol 259:304–311

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Kublanov IV, Reysenbach A-L, Kolganova TV, Bonch-Osmolovskaya EA (2011) Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 61:1160–1164

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Bonchosmolovskaya EA, Godfroy A, Gavrilov SN, Beskorovaynaya DA, Sokolova TG, Kolganova TV, Toshchakov SV, Kublanov IV (2014) Thermosipho activus sp. nov., a novel thermophilic anaerobic hydrolytic bacterium isolated from a deep-sea sample Guaymas Basin, Gulf of California. Int J Syst Evol Microbiol 64:3307–3313

    CAS  PubMed  Google Scholar 

  • Postec A, Breton CL, Fardeau M, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221

    CAS  PubMed  Google Scholar 

  • Radfordknoery J, German CR, Charlou J, Donval JP, Fouquet Y (2001) Distribution and behavior of dissolved hydrogen sulfide in hydrothermal plumes. Limnol Oceanogr 46:461–464

    CAS  Google Scholar 

  • Raguénès G, Christen R, Guezennec J, Pignet P, Barbier G (1997) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Int J Syst Bacteriol 47:989–995

    PubMed  Google Scholar 

  • Reysenbach AL (2001) Aquificales. In: Boone DRGG (ed) Bergey’s manual of systematic bacteriology. Springer, Berlin Heidelberg New York, pp 369–387

    Google Scholar 

  • Reysenbach A, Shock EL (2002) Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:1077–1082

    CAS  PubMed  Google Scholar 

  • Reysenbach A, Gotz D, Banta AB, Jeanthon C, Fouquet Y (2002) Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic Ridge and Central Indian Ridge. Cah Biol Mar 43:425–428

    Google Scholar 

  • Reysenbach A, Liu Y, Banta AB, Beveridge T, Kirshtein J, Schouten S, Tivey M, Von Damm K, Voytek M (2006) A ubiquitous thermoacidophilic archaeon from deep-sea Hydrothermal vents. Nature 442:444–447

    CAS  PubMed  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova A, Stapleton RD, Moon J, Phelps TJ, Fredrickson JK, Zhou J (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe (III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Environ Microbiol 72:3236–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the galapagos rift hydrothermal vents.Appl Environ Microbiol 42:317–324

  • Sakai S, Takaki Y, Miyazaki M, Ogawara M, Yanagawa K, Miyazaki J, Takai K (2019) Methanofervidicoccus abyssi gen. nov., sp. nov., a hydrogenotrophic methanogen, isolated from a hydrothermal vent chimney in the Mid-Cayman Spreading Center, the Caribbean Sea. Int J Syst Evol Microbiol 69:1225–1230

    CAS  PubMed  Google Scholar 

  • Sako Y, Nakagawa S, Takai K, Horikoshi K (2003) Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65

    CAS  PubMed  Google Scholar 

  • Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PS, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hügler M, Kerfeld CA et al (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:e383

    PubMed  PubMed Central  Google Scholar 

  • Segerer AH, Burggraf S, Fiala G, Huber G, Huber R, Pley U, Stetter KO (1993) Life in hot springs and hydrothermal vents. Origins Life Evol B 23:77–90

    CAS  Google Scholar 

  • Sievert SM, Hugler M, Taylor CD, Wirsen CO (2008) Sulfur oxidation at deep-sea Hydrothermal vents. In: Dahl C FC (ed) Microbial sulfur metabolism. Springer, Berlin, Heidelberg, pp 238–258

  • Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ (2011) Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6:e25386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer E, Heidelberg JF, Dhillon A, Edwards K (2013) Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lō´ihi. Hawaii. Front Microbiol 4:52–52

    PubMed  PubMed Central  Google Scholar 

  • Slobodkin AI, Slobodkina GB (2019) Diversity of sulfur-disproportionating microorganisms. J Microbiol 88:509–522

    CAS  Google Scholar 

  • Slobodkin AI, Tourova T, Kuznetsov B, Kostrikina N, Chernyh N, Bonch-Osmolovskaya E (1999) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe (III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Evol Microbiol 49:1471–1478

    Google Scholar 

  • Slobodkin AI, Campbell BJ, Cary SC, Bonch-Osmolovskaya EA, Jeanthon C (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea Hydrothermal vents at 13N(East Pacific Rise). FEMS Microbiol Ecol 36:235–243

    CAS  PubMed  Google Scholar 

  • Slobodkin AI, Reysenbach A, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonchosmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571

    CAS  PubMed  Google Scholar 

  • Slobodkin AI, Reysenbach A, Slobodkina GB, Kolganova TV, Kostrikina NA, Bonchosmolovskaya EA (2013) Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63:1967–1971

    CAS  PubMed  Google Scholar 

  • Slobodkin AI, Slobodkina GB, Allioux M, Alain K, Jebbar M, Shadrin V, Kublanov IV, Toshchakov SV, Bonchosmolovskaya EA (2019) Genomic insights into the carbon and energy metabolism of a thermophilic deep-sea bacterium Deferribacter autotrophicus revealed new metabolic traits in the Phylum Deferribacteres. Genes 10:849

    CAS  PubMed Central  Google Scholar 

  • Slobodkina G, Kolganova T, Chernyh N, Querellou J, Bonch-Osmolovskaya E, Slobodkin AI (2009) Deferribacter autotrophicus sp. nov., an iron (III)-reducing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:1508–1512

    CAS  PubMed  Google Scholar 

  • Slobodkina G, Kolganova T, Querellou J, Bonch-Osmolovskaya E, Slobodkin AI (2009) Geoglobus acetivorans sp. nov., an iron (III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:2880–2883

    CAS  PubMed  Google Scholar 

  • Slobodkina G, Reysenbach A-L, Panteleeva A, Kostrikina N, Wagner I, Bonch-Osmolovskaya E, Slobodkin AI (2012) Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron (III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol 62:2463–2468

    CAS  PubMed  Google Scholar 

  • Slobodkina G, Reysenbach A, Kolganova TV, Novikov AA, Bonchosmolovskaya EA, Slobodkin AI (2017) Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a thermophilic, chemolithoautotrophic bacterium capable of respiratory ammonification of nitrate with elemental sulfur. Int J Syst Evol Microbiol 67:3474–3479

    CAS  PubMed  Google Scholar 

  • Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC (2008) Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 58:1598–1602

    CAS  PubMed  Google Scholar 

  • Sondergaard D, Pedersen CN, Greening C (2016) HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6:34212

    PubMed  PubMed Central  Google Scholar 

  • Steinsbu BO, Tindall BJ, Torsvik V, Thorseth IH, Daae FL, Pedersen RB (2011) Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid-Ocean Ridge. Int J Syst Evol Microbiol 61:2197–2204

    CAS  PubMed  Google Scholar 

  • Stewart LC, Jung J, Kim Y, Kwon S, Park C, Holden JF (2015) Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:1280–1283

    CAS  PubMed  Google Scholar 

  • Stokke R, Reeves EP, Dahle H, Fedøy A-E, Viflot T, Lie Onstad S, Vulcano F, Pedersen RB, Eijsink VGH, Steen IH (2020) Tailoring hydrothermal vent biodiversity toward improved biodiscovery using a novel in situ enrichment strategy. Front Microbiol 11:249

    PubMed  PubMed Central  Google Scholar 

  • Sudek LA, Templeton AS, Tebo BM, Staudigel H (2009) Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u Seamount, American Samoa. Geomicrobiol J 26:581–596

    CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicas sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17

    CAS  PubMed  Google Scholar 

  • Takai K, Sugai A, Itoh Y, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    CAS  PubMed  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095

    CAS  PubMed  Google Scholar 

  • Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174

    CAS  PubMed  Google Scholar 

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846

    CAS  PubMed  Google Scholar 

  • Takai K, Nakagawa S, Sako Y, Horikoshi K (2003) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954

    CAS  PubMed  Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004a) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100

    CAS  PubMed  Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004b) Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogenoxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32

    CAS  PubMed  Google Scholar 

  • Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004c) Spatial distribution of marine Crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2004d) Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54:2325–2333

    CAS  PubMed  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the “Epsilonproteobacteria”, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189

    CAS  PubMed  Google Scholar 

  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733

    CAS  PubMed  Google Scholar 

  • Takai K, Nunoura T, Ishibashi J, Lupton J, Suzuki R, Hamasaki H (2008) Variability in the microbial communities and hydrothermal fluid chemistry at the newly-discoverred Mariner hydrothermal field, southern Lau Basin. J Geophys Res 113:G02031

    Google Scholar 

  • Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    PubMed  Google Scholar 

  • Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier J, Jannasch HW (2000) Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66:3125–3133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teske AE, Rivers P, Thompson AR, Gomez JR, Molyneaux SJ, Wirsen CO (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:905–915

    PubMed  Google Scholar 

  • Tomohiko K, Akitomo K, Ikuko U, Akihiko S (2011) Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int J Syst Evol Microbiol 61:1622–1627

    Google Scholar 

  • Toner BM, Marcus MA, Edwards KJ, Rouxel O, German CR (2012) Measuring the form of iron in hydrothermal plume particles. Oceanography 25:209–212

    Google Scholar 

  • Urios L, Cueff-Gauchard V, Pignet P, Postec A, Barbier G (2004) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957

    CAS  PubMed  Google Scholar 

  • Valentine DL, Blanton DC, Reeburgh WS, Kastner M (2001) Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochim Cosmochim Acta 65:2633–2640

    CAS  Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen MA, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Marine Ecol 28:54–62

    Google Scholar 

  • Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK (2012) Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci USA 109:13674–13679

    CAS  PubMed  Google Scholar 

  • Vetriani C, Speck M, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181

    CAS  PubMed  Google Scholar 

  • Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl Environ Microbiol 71:220–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vetriani C, Voordeckers JW, Crespomedina M, Obrien CE, Giovannelli D, Lutz RA (2014) Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8:1510–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    CAS  PubMed  Google Scholar 

  • Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    CAS  PubMed  Google Scholar 

  • Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Nostrand JDV, Deng Y, He Z, Wu L, Zhou J, Xiao X (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci USA 106:4840–4845

    CAS  PubMed  Google Scholar 

  • Wang Y, Feng X, Natarajan VP, Xiao X, Wang F (2019) Diverse anaerobic methane- and multi- carbon alkane- metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environ Microbiol 21:1344–1355

    CAS  PubMed  Google Scholar 

  • Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z (2020) Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ microbial. https://doi.org/10.1111/1462-2920.15247

    Article  Google Scholar 

  • Wang W, Li Z, Zeng L, Dong C, Shao Z (2020) The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J 14:1994–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740

    CAS  PubMed  Google Scholar 

  • Wasmund K, Musmann M, Loy A (2017) The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 9:323–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    CAS  PubMed  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Barbier G (2001a) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    CAS  PubMed  Google Scholar 

  • Wery N, Moricet J, Cueff V, Jean J, Pignet P, Lesongeur F, Cambonbonavita M, Barbier G (2001b) Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796

    CAS  PubMed  Google Scholar 

  • Wu Y, Cao Y, Wang C, Wu M, Aharon O, Xu X (2014) Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge. Acta Oceanol Sinica 33:94–104

    Google Scholar 

  • Xu W, Li M, Ding J, Gu J, Luo Z (2014) Bacteria dominate the ammonia-oxidizing community in a hydrothermal vent site at the mid-atlantic ridge of the South Atlantic Ocean. Appl Microbiol Biotechnol 98:7993–8004

    CAS  PubMed  Google Scholar 

  • Xu W, Guo S, Pang KL, Luo Z (2017) Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. Deep-Sea Res Part I 123:48–55

    CAS  Google Scholar 

  • Xu W, Gong LF, Pang KL, Luo Z (2018) Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep-Sea Res Part I 131:16–26

    CAS  Google Scholar 

  • Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2:192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Wu W, Liang W, Lever MA, Hinrichs K-U, Wang F (2018) Growth of sedimentary bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA 115:6022–6027

    CAS  PubMed  Google Scholar 

  • Zavarzina D, Tourova T, Kuznetsov B, Bonch-Osmolovskaya E, Slobodkin A (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52:1737–1743

    CAS  PubMed  Google Scholar 

  • Zeng X, Birrien J, Fouquet Y, Cherkashov G, Jebbar M, Quérellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure–temperature limits for life. ISME J 3:873–876

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L, Alain K, Jebbar M, Shao Z (2013) Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang Z, Li X, Jebbar M, Alain K, Shao Z (2015) Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron (III)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits. Int J Syst Evol Microbiol 65:1714–1718

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang Z, Li X, Cao J, Zhang X, Jebbar M, Alain K, Shao Z (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang X, Shao Z (2020) Metabolic adaptation to sulfur of hyperthermophilic Palaeococcus pacificus DY20341T from deep-sea hydrothermal sediments. Int J Mole Sci 21:368

    CAS  Google Scholar 

  • Zhang Y, Sievert SM (2014) Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol 5:110

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Fang J, Bach W, Edwards KJ, Orcutt BN, Wang F (2016) Nitrogen stimulates the growth of subsurface basalt-associated microorganisms at the Western flank of the mid-Atlantic Ridge. Front Microbiol 3:633

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFC0310701), the Chinese National Natural Science Foundation (No. 91951201), the Scientific Research Foundation of Third Institute of Oceanography, MNR (No. 2017003) and the Sino-French LIA/IRP 1211 MicrobSea.

Author information

Authors and Affiliations

Authors

Contributions

XZ analyzed the data and wrote the paper. KA, ZS revised the paper. XZ, ZS offered the foundation. The final manuscript was approved by all the authors.

Corresponding author

Correspondence to Zongze Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

SPECIAL TOPIC: Cultivation of uncultured microorganisms.

Edited by Chengchao Chen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Alain, K. & Shao, Z. Microorganisms from deep-sea hydrothermal vents. Mar Life Sci Technol 3, 204–230 (2021). https://doi.org/10.1007/s42995-020-00086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-020-00086-4

Keywords

Navigation