Skip to main content

Advertisement

Log in

Impacts of ocean acidification under multiple stressors on typical organisms and ecological processes

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The oceans are taking up over one million tons of fossil CO2 per hour, resulting in increased pCO2 and declining pH, leading to ocean acidification (OA). At the same time, accumulation of CO2 and other greenhouse gases is causing ocean warming, which enhances stratification with thinned upper mixed layers, exposing planktonic organisms to increasing levels of daytime integrated UV radiation. Ocean warming also reduces dissolved oxygen in seawater, resulting in ocean deoxygenation. All these ocean global changes are impacting marine ecosystems and effects are well documented for each individual driver (pH, oxygen, temperature, UV). However, combined effects are still poorly understood, strongly limiting our ability to project impacts at regional or local levels. Different regions are often exposed (and often adapted) to contrastingly different physical and chemical environmental conditions and organisms, and ecosystems from different parts of the world will be exposed to unique combinations of stressors in the future. Understanding the modulating role of adaptation, species niche and stressors’ interaction is key. This review, being a non-exhaustively explored one, aims to provide an overview on understandings of ecophysiological effects of OA and its combination with covarying drivers, mainly warming, deoxygenation and solar UV radiation. We propose a testable hypothetical model as well as future research perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agusti S, González-Gordillo JI, Vaqué D, Estrada M, Cerezo MI (2015) Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat Commun 6:1–8

    Google Scholar 

  • Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110:8603–8608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashur MM, Johnston NK, Dixson DL (2017) Impacts of ocean acidification on sensory function in marine organisms. Integr Comp Biol 57:63–80

    PubMed  Google Scholar 

  • Bais AF, Lucas RM, Bornman JF, Willamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM et al (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP environmental effects assessment panel, update 2017. Photochem Photobiol Sci 17:127–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao B, Ren G (2014) Climatological characteristics and long-term change of SST over the marginal seas of China. Cont Shelf Res 77:96–106

    Google Scholar 

  • Basso L, Hendriks IE, Duarte CM (2015) Juvenile pen shells (Pinna nobilis) tolerate acidification but are vulnerable to warming. Estuarie Coasts 38:1976–1985

    Google Scholar 

  • Bergen B, Endres S, Engel A, Zark M, Dittmar T, Sommer U, Jürgens K (2016) Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ Microbiol 18:4579–4595

    CAS  PubMed  Google Scholar 

  • Bigg G, Hanna E (2016) Impacts and effects of ocean warming on the weather. In: Laffoley D, Baxter JM (eds) Explaining ocean warming: causes, scale, effects and consequences. IUCN, Gland, pp 359–372

    Google Scholar 

  • Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, Hutchins DA, Riebesell U, Rintoul MS, Vichi M, Biswas H, Ciotti A, Gao KS, Gehlen M, Hurd CL, Kurihara H, McGraw CM, Navarro JM, Nilsson GE, Passow U et al (2018) Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob Change Biol 24:2239–2261

    Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GC, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M et al (2018) Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240

    PubMed  Google Scholar 

  • Brennan G, Collins S (2015) Growth responses of a green alga to multiple environmental drivers. Nat Clim Change 5:892–897

    Google Scholar 

  • Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348

    CAS  PubMed  Google Scholar 

  • Brown NEM, Bernhardt JR, Anderson KM, Harley CDG (2018) Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Sci Rep 8:9800

    PubMed  PubMed Central  Google Scholar 

  • Bunse C, Lundin D, Karlsson CMG, Akram N, Vila-Costa M, Palovaara J, Svensson L, Holmfeldt K, González JM, Calvo E, Pelejero C, Marrasé C, Dopson M, Gasol JM, Pinhassi J (2016) Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat Clim Change 6:483–487

    CAS  Google Scholar 

  • Burrell TJ, Maas EW, Hulston DA, Law CS (2017) Variable response to warming and ocean acidification by bacterial processes in different plankton communities. Aquat Microb Ecol 79:49–62

    Google Scholar 

  • Cai WJ, Hu XP, Huang WJ, Murrel MC, Lehrter JC, Lohrenz SE, Chou WC, Zhai WD, Guo XH, Gundersen K, Dai M, Gong GC (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770

    CAS  Google Scholar 

  • Calosi P, de Wit P, Thor P, Dupont S (2016) Will life find a way? Evolution of marine species under global change. Evol Appl 9:1035–1042

    PubMed  PubMed Central  Google Scholar 

  • Carreira C, Heldal M, Bratbak G (2013) Effects of increased pCO2 on phytoplankton-virus interactions. Biogeochemistry 114:391–397

    Google Scholar 

  • Chaidez V, Dreano D, Agusti S, Duarte CM, Hoteit I (2017) Decadal trends in Red Sea maximum surface temperature. Sci Rep 7:8144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan NCS, Wangpraseurt D, Kuhl M, Connolly SR (2017) Flow and coral morphology control coral surface pH: implications for the effects of ocean acidification. Front Mar Sci 3:1–11

    Google Scholar 

  • Chen SW, Gao KS, Beardall J (2015) Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification. Global Change Biol 21:629–636

    Google Scholar 

  • Chua CM, Leggat W, Moya A, Baird A (2013) Temperature affects the early life history stages of corals more than near future ocean acidification. Mar Ecol Prog Ser 475:85–92

    Google Scholar 

  • Clark H, Gobler CJ (2016) Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar Ecol Prog Ser 558:1–14

    CAS  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    CAS  PubMed  Google Scholar 

  • Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL (2013) Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnol Oceanogr 58:121–130

    CAS  Google Scholar 

  • Czerny J, Schulz KG, Boxhammer T, Bellerby RGJ, Büdenbender J, Engel A, Krug SA, Ludwig A, Nachtigall K, Nondal G, Niehoff B, Silyakova A, Riebesell U (2013) Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study—an elemental mass balance approach. Biogeosciences 10:3109–3125

    CAS  Google Scholar 

  • Dai MH, Lu ZM, Zhai WD, Chen BS, Cao ZM, Zhou KB, Cai WJ, Chenc CTA (2009) Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnol Oceanogr 54:735–745

    CAS  Google Scholar 

  • De Wit P, Dupont S, Thor P (2016) Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol Appl 9:1112–1123

    PubMed  Google Scholar 

  • DePasquale E, Baumann H, Gobler CJ (2015) Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar Ecol Prog Ser 523:145–156

    CAS  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Google Scholar 

  • Esbaugh AJ, Ern R, Nordi WM, Johnson AS (2016) Respiratory plasticity is insufficient to alleviate blood acid-base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B 186:97–109

    CAS  PubMed  Google Scholar 

  • Fischetti M (2013) Deep heat threatens marine life. Sci Am 308:92

    PubMed  Google Scholar 

  • Fitzer SC, Phoenix VR, Cusack M, Kamenos N (2014) Ocean acidification impacts mussel control on biomineralisation. Sci Rep 4:6218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francis Pan T-C, Applebaum SL, Manahan DT (2015) Experimental ocean acidification alters the allocation of metabolic energy. Proc Natl Acad Sci USA 112:4696–4701

    Google Scholar 

  • Fu FX, Warner ME, Zhang YH, Feng YY, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Google Scholar 

  • Gao KS, Campbell D (2014) Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Func Plant Biol 41:449–459

    CAS  Google Scholar 

  • Gao KS, Zheng YQ (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biol 16:2388–2398

    Google Scholar 

  • Gao KS, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    CAS  Google Scholar 

  • Gao KS, Wu YP, Li G, Wu HY, Villafañe VE, Helbling EW (2007) Solar UV-radiation drives CO2-fixation in MARINE phytoplankton: a double-edged sword. Plant Physiol 144:54–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao KS, Li P, Watanabe T, Helbling EW (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) Platensis (Cyanophyta). J Phycol 44:777–786

    PubMed  Google Scholar 

  • Gao KS, Ruan ZX, Villafañe VE, Gattuso JP, Helbling EW (2009) Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol Oceanogr 54:1855–1862

    CAS  Google Scholar 

  • Gao KS, Xu JT, Gao G, Li YH, Hutchins DA, Huang BQ, Wang L, Zheng Y, Jin P, Cai XN, Häder DP, Li W, Xu K, Liu N, Riebesell U (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Change 2:519–523

    CAS  Google Scholar 

  • Gao G, Liu Y, Li X, Feng Z, Xu J (2016) An ocean acidification acclimatized green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS ONE 11:e0169040

    PubMed  PubMed Central  Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2017a) Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar Pollut Bull 114:439–447

    CAS  PubMed  Google Scholar 

  • Gao G, Jin P, Liu N, Li F, Tong S, Hutchins DA, Gao K (2017b) The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and pCO2 in the northern South China Sea. Mar Pollut Bull 118:213–220

    CAS  PubMed  Google Scholar 

  • Gao G, Beardall J, Bao M, Wang C, Ren W, Xu J (2018a) Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza. Biogeosciences 15:3409–3420

    CAS  Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2018b) Ulva rigida in the future ocean: potential for carbon capture, bioremediation and biomethane production. GCB Bioenerg 10:39–51

    CAS  Google Scholar 

  • Gao G, Xu Z, Shi Q, Wu H (2018c) Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii. Environ Exp Bot 156:96–105

    CAS  Google Scholar 

  • Gao KS, Zhang Y, Hader DP (2018d) Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J Appl Phycol 30:743–759

    CAS  Google Scholar 

  • Gao G, Gao Q, Bao M, Xu J, Li X (2019) Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis. Food Chem 271:623–629

    CAS  PubMed  Google Scholar 

  • García E, Clemente S (2015) Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Mar Environ Res 110:61–68

    PubMed  Google Scholar 

  • Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos EL, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Rankovic A, Rochette J, Sumaila UR, Treyer S et al (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:45–55

    CAS  Google Scholar 

  • Gaylor B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JM, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15

    Google Scholar 

  • Gianguzza P, Visconti G, Gianguzza F, Vizzini S, Gianluca S, Dupont S (2014) Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Mar Environ Res 93:70–77

    CAS  PubMed  Google Scholar 

  • Gobler CJ, Baumann H (2016) Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol Lett 12:20150976

    PubMed  PubMed Central  Google Scholar 

  • Gobler CJ, DePasquale EL, Griffith AW, Baumann H (2014) Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9:e83648

    PubMed  PubMed Central  Google Scholar 

  • Goldenberg SU, Nagelkerken I, Ferreira CM, Ullah H, Connell SD (2017) Boosted food web productivity through ocean acidification collapses under warming. Glob Change Biol 23:4177–4184

    Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    CAS  PubMed  Google Scholar 

  • Gutow L, Rahman MM, Bartl K, Saborowski R, Bartsch I, Wiencke C (2014) Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). J Exp Mar Biol Ecol 453:84–90

    CAS  Google Scholar 

  • Häder D-P, Williamson CE, Wangberg S-A, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14:108–126

    PubMed  Google Scholar 

  • Hannan KD, Rummer JL (2018) Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions. J Exp Biol 221:1–8

    Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    CAS  PubMed  Google Scholar 

  • Harvey BP, Dylan GJ, Moore P (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030

    PubMed  PubMed Central  Google Scholar 

  • Hutchins DA, Fu FX, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304

    CAS  Google Scholar 

  • Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P (2019) Climate change microbiology—problems and perspectives. Nat Rev Microbiol 17:391–396

    CAS  PubMed  Google Scholar 

  • Hyun B, Choi KH, Jang PG, Jang MC, Lee WJ, Moon CH, Shin K (2014) Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in laboratory experiments. J Environ Sci Int 23:1003–1012

    Google Scholar 

  • IGBP, IOC, SCOR (2013) Ocean acidification summary for policymakers-third symposium on the ocean in a high-CO2 world. International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • IPCC Climate Change (2013) The physical science basis. In: Stocker TF, Qin DH, Plattner GK (eds) Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge Univ Press, New York, pp 6–10

    Google Scholar 

  • Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453

    Google Scholar 

  • Ji Y, Xu Z, Zou D, Gao K (2016) Ecophysiological responses of marine macroalgae to climate change factors. J Appl Phycol 28:2953–2967

    CAS  Google Scholar 

  • Jiao NZ, Zheng Q (2011) The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77:7439–7444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao NZ, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo TW, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    CAS  PubMed  Google Scholar 

  • Jin S, Zhang BS, Weisz OA, Montelaro RC (2005) Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway. J Virol 79:14489–14497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Wang TF, Liu NN, Dupont S, Beardall J, Boyd PW, Riebesell U, Gao KS (2015) Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat Commun 6:8714

    CAS  PubMed  Google Scholar 

  • Jin P, Duarte CM, Agusti S (2017) Contrasting responses of marine and freshwater photosynthetic organisms to uvb radiation: a meta-analysis. Front Mar Sci 4:45

    Google Scholar 

  • Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229

    Google Scholar 

  • Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, Penna A (2012) Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2:1195–1207

    PubMed  PubMed Central  Google Scholar 

  • Krueger PA, Fong J (1937) The relationship between bacterial growth and phage production. J Gen Physiol 21:137–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Google Scholar 

  • Kunz KL, Frickenhaus S, Hardenberg S, Johansen T, Leo E, Poertner H-O (2016) New encounters in Arctic waters: a comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol 39:1137–1153

    Google Scholar 

  • Lee C, Kwon BO, Hong S, Noh J, Lee J, Ryu J, Khim JS (2018) Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma. Environ Pollut 241:586–595

    CAS  PubMed  Google Scholar 

  • Lenz BL (2017) Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin, Lytechinus variegatus. Mar Pollut Bull 141:70–78

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    CAS  Google Scholar 

  • Li G, Gao KS (2012a) Variation in UV irradiance related to stratospheric ozone levels affects photosynthetic carbon fixation of winter phytoplankton assemblages from surface coastal water of the South China Sea. Mar Biol Res 8:670–676

    Google Scholar 

  • Li W, Gao KS (2012b) A marine secondary producer respires and feeds more in a high CO2 ocean. Mar Pollut Bull 64:699–703

    CAS  PubMed  Google Scholar 

  • Li G, Gao K, Gao G (2011) Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem Photobiol 87:329–334

    CAS  PubMed  Google Scholar 

  • Li FT, Wu YP, Hutchins DA, Fu FX, Gao KS (2016) Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeosciences 13:6247–6259

    CAS  Google Scholar 

  • Li FT, Beardall J, Gao KS (2018) Diatom performance in a future ocean: interactions between nitrogen limitation, temperature, and CO2-induced seawater acidification. ICES J Mar Sci 75:1451–1464

    Google Scholar 

  • Lifavi DM, Targett TE, Grecay PA (2017) Effects of diel-cycling hypoxia and acidification on juvenile weakfish Cynoscion regalis growth, survival, and activity. Mar Ecol Prog Ser 564:163–174

    CAS  Google Scholar 

  • Lin X, Huang RP, Li Y, Li FT, Wu YP, Hutchins DA, Dai MH, Gao KS (2018) Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment. Biogeosciences 15:551–565

    CAS  Google Scholar 

  • Listmann L, Leroch M, Schlüter L, Thomas MK, Reusch BH (2016) Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl 9:1156–1164

    PubMed  PubMed Central  Google Scholar 

  • Liu M, Liu S, Hu Y, Pan L (2015) Cloning and expression analysis of two carbonic anhydrase genes in white shrimp Litopenaeus vannamei, induced by pH and salinity stresses. Aquaculture 448:391–400

    CAS  Google Scholar 

  • Liu HB, Chen MR, Zhu F, Harrison PJ (2016) Effect of diatom silica content on copepod grazing, growth and reproduction. Front Mar Sci 3:1–7

    Google Scholar 

  • Ma ZL, Li W, Shen AL, Gao KS (2013) Behavioral responses of zooplankton to solar radiation changes: in situ evidence. Hydrobiologia 71:155–163

    Google Scholar 

  • Ma J, Wang W, Qu L, Liu X, Wang Z, Qiao S, Wu H, Gao G, Xu J (2019) Differential photosynthetic response of a green tide alga Ulva linza to ultraviolet radiation, under short-and long-term ocean acidification regimes. Photochem Photobiol 95:990–998

    CAS  PubMed  Google Scholar 

  • Martin S, Hall-Spencer JM (2017) Effects of ocean warming and acidification on rhodolith/maërl beds. Rhodolith/Maërl beds: a global perspective. Springer, Cham, pp 55–85

    Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Portner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    CAS  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888

    CAS  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Google Scholar 

  • Milligan AJ, Varela DE, Brzezinski MA, Morel FMM (2004) Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnol Oceanogr 49:322–329

    CAS  Google Scholar 

  • Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248

    CAS  PubMed  Google Scholar 

  • NOAA(2019) The World’s CO2 Home Page. https://www.co2.earth/, USA

  • Osso A, Sola Y, Bech J, Lorente J (2011) Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J Geophys Res Atmos 116:1–12

    Google Scholar 

  • Page HN, Andersson AJ, Jokiel PL, Rodgers KuS, Lebrato M, Yeakel K, Bahr KD (2016) Differential modification of seawater carbonate chemistry by major coral reef benthic communities. Coral Reefs 35:1311–1325

    Google Scholar 

  • Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob Chang Biol 20:765–777

    PubMed  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Pörtner HO, Elliot S, Wright JM (2013) Predicting the response of molluscs to the impact of ocean acidification. Biology 2:651–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Sommer U, Garzke J, Moustaka-Gouni M, Paul A, Matthiessen B (2016) Effects of increased CO2 concentration on nutrient limited coastal summer plankton depend on temperature. Limnol Oceanogr 61:853–868

    CAS  Google Scholar 

  • Paulmier A, Ruizpino D, On VG (2011) CO2 maximum in the oxygen minimum zone (OMZ). Biogeosciences 8:239–252

    CAS  Google Scholar 

  • Pedersen SA, Hanssen A (2018) Ocean acidification ameliorates harmful effects of warming in primary consumer. Ecol Evol 8:396–404

    PubMed  Google Scholar 

  • Plummer DA, Scinocca JF, Shepherd TG, Reader MC, Jonsson AI (2010) Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases. Atmos Chem Phys 10:8803–8820

    CAS  Google Scholar 

  • Porteus CS, Hubbard PC, Webster TMU, van Aerie R, Canario AVM, Santos EM, Wilson RW (2018) Near-future CO2 levels impair the olfactory system of a marine fish. Nat Clim Change 8:737–743

    CAS  Google Scholar 

  • Przeslawski R, Byrne M, Mellin C (2015) A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob Chang Biol 21:2122–2140

    PubMed  Google Scholar 

  • Ramesh K, Hu MY, Thomsen J, Bleich M, Melzner F (2017) Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification. Nat Commun 8:1–8

    CAS  Google Scholar 

  • Raybaud V, Tambutte S, Ferrier-Pages C, Reynaud S, Venn AA, Tambutte E, Allemand D (2017) Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification. J Theor Biol 424:26–36

    CAS  PubMed  Google Scholar 

  • Rhode SC, Pawlowski M, Tollrian R (2001) The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412:69–72

    CAS  PubMed  Google Scholar 

  • Riebesell U, Gattuso JP (2015) Lessons learned from ocean acidification research. Nat Clim Change 5:12–14

    CAS  Google Scholar 

  • Riebesell U, Aberle-Malzahn N, Achterberg EP, Algueró-Muñiz M, Alvarez-Fernandez S, Arístegui J, Bach LT, Boersma M, Boxhammer T, Guan W, Haunost M (2018) Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat Clim Change 8:1082–1087

    CAS  Google Scholar 

  • Rodriguez-Dominguez A, Connell SD, Baziret C, Nagelkerken I (2018) Irreversible behavioural impairment of fish starts early: embryonic exposure to ocean acidification. Mar Pollut Bull 133:562–567

    CAS  PubMed  Google Scholar 

  • Rong J, Su W, Guan X, Shi W, Zha S, He M, Liu G (2018) Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front Physiol 9:1–12

    CAS  Google Scholar 

  • Rossi T, Nagelkerken I, Pistevos JCA, Connell SD (2016) Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol Lett 12:1–4

    Google Scholar 

  • Schlüter L, Kai TL, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH (2014) Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change 4:1024–1030

    Google Scholar 

  • Schmidtko S, Stramma L, Visbeck M (2017) Decline in global oceanic oxygen content during the past five decades. Nature 542:335–339

    CAS  PubMed  Google Scholar 

  • Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U (2014) Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE 9:e88308

    PubMed  PubMed Central  Google Scholar 

  • Shao YT, Chang FY, Fu W-C, Yan HY (2016) Acidified seawater suppresses insulin-like growth factor I mRNA expression and reduces growth rate of juvenile orange-spotted groupers, Epinephelus coioides (Hamilton, 1822). Aquac Res 47:721–731

    CAS  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212

    CAS  Google Scholar 

  • Sobrino C, Ward ML, Neale PJ (2008) Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol Oceanogr 53:494–505

    CAS  Google Scholar 

  • Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353:269–274

    CAS  PubMed  Google Scholar 

  • Sswat M, Stiasny MH, Taucher J, Algueró-Muñiz M, Bach LT, Jutfelt F, Riebesell U, Clemmesen C (2018) Food web changes under ocean acidification promote herring larvae survival. Nat Ecol Evol 2:836–840

    PubMed  Google Scholar 

  • Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont S (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Phys A 160:320–330

    CAS  Google Scholar 

  • Stumpp M, Hu M, Melzner F, Gutowska MA, Dorey N, Himmerkus N, Holtmann W, Dupont S, Thorndyke MC, Bleich M (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci USA 109:18192–18197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpp M, Hu M, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Change 3:1044–1049

    CAS  Google Scholar 

  • Sui Y, Hu M, Shang Y, Wu F, Huang X, Dupont S, Storch D, Poertner H, Li J, Lu W, Wang Y (2017) Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration. Ecotoxi Environ Safe 137:94–102

    CAS  Google Scholar 

  • Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125

    PubMed  Google Scholar 

  • Tedetti M, Sempéré R, Vasilkov A, Charrière B, Nérini D, Miller WL, Kawamura K, Raimbault P (2007) High penetration of ultraviolet radiation in the South East Pacific Waters. Geophys Res Lett 34:1–5

    Google Scholar 

  • Thomsen J, Gutowska MA, Saphoerster J, Heinemann A, Truebenbach K, Fietzke J, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891

    CAS  Google Scholar 

  • Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biol 21:2261–2271

    Google Scholar 

  • Tirsgaard B, Moran D, Steffensen JF (2015) Prolonged SDA and reduced digestive efficiency under elevated CO2 may explain reduced growth in Atlantic cod (Gadus morhua). Aquat Toxicol 158:171–180

    CAS  PubMed  Google Scholar 

  • Tong SY, Hutchins DA, Gao KS (2019) Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences 16:561–572

    CAS  Google Scholar 

  • Traving SJ, Clokie MRJ, Middelboe M (2014) Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses. FEMS Microbiol Ecol 87:133–141

    CAS  PubMed  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas C, Lagos N, Lardies M, Duarte C, Manríquez P, Aguilera V, Broiman B, Widdicombe S, Dupont S (2017) Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat Ecol Evol 1:1–7

    CAS  Google Scholar 

  • Vivani DA (2016) Variability and controls of production, partitioning, and utilization of organic matter in the north pacific subtropical gyre. Doctoral Dissertation. University of Hawaii, Hawaii

  • Waldbusser GG, Salisbury JE (2014) Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annu Rev Mar Sci 6:221–247

    Google Scholar 

  • Wang GZ, Jing WP, Wang SL, Xu Y, Wang ZY, Zhang ZL, Li QL, Dai MH (2014) Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environ Sci Technol 48:13069–13075

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang R, Zheng Q, Deng Y, Nostrand JDV, Zhou JZ, Jiao NZ (2015) Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. ICES J Mar Sci 73:865–875

    CAS  Google Scholar 

  • Wangensteen OS, Dupont S, Casties I, Turon X, Palacín C (2013) Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol 449:304–311

    Google Scholar 

  • Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, Schmidt C, Uthicke S (2016) Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Rep 6:1–9

    Google Scholar 

  • Weil ML, Beard D, Beard JW (1948) PH stability, response to antibiotics and factors influencing egg-culture of mumps virus. Proc Soc Exp Biol Med 68:308–309

    CAS  PubMed  Google Scholar 

  • Whitney FA, Freeland HJ, Robert M (2007) Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog Oceanogr 75:179–199

    Google Scholar 

  • Williams GA, Helmuth B, Russell BD, Dong YW, Thiyagarajan V, Seuront L (2016) Meeting the climate change challenge: pressing issues in southern China and SE Asian coastal ecosystems. Reg Stud Mar Sci 8:373–381

    Google Scholar 

  • Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais AF, McKenzie RL, Robinson SA, Häder DP, Paul ND, Bornman JF (2014) Solar ultraviolet radiation in a changing climate. Nat Clim Change 4:434–441

    Google Scholar 

  • Wu HY, Gao KS, Villafañe VE, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospora platensis. Appl Environ Microb 71:5004–5013

    CAS  Google Scholar 

  • Xu JT, Gao KS (2010) Use of UV-A energy for photosynthesis in the red macroalga Gracilaria lemaneiformis. Photochem Photobiol 86:580–585

    CAS  PubMed  Google Scholar 

  • Xu K, Gao KS (2015) Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi. Photochem Photobiol 91:92–101

    CAS  PubMed  Google Scholar 

  • Xu K, Fu FX, Hutchins DA (2015) Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnol Oceanogr 59:1919–1931

    Google Scholar 

  • Xu Z, Gao G, Xu J, Wu H (2017) Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences 14:671–681

    CAS  Google Scholar 

  • Xue B, Sun J, Li T (2016) Phytoplankton community structure of northern South China Sea in summer of 2014. Acta Oceanol Sin 38:54–65

    CAS  Google Scholar 

  • Yuan XT, Shao SL, Yang XL, Yang DZ, Xu QZ, Zong HM, Liu SL (2016) Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification. Environ Sci Pollut R 23:8453–8461

    CAS  Google Scholar 

  • Zark M, Riebesell U, Dittmar T (2015) Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci Adv 1:e1500531

    PubMed  PubMed Central  Google Scholar 

  • Zou DH, Gao KS (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    CAS  Google Scholar 

  • Zou DH, Gao KS, Luo HJ (2011) Short- and long- term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos 41720104005, 41721005, 31872587), the Joint Project of National Natural Science Foundation of China and Shandong Province (No. U1606404), the Shanghai Pujiang Talent Program (18PJ1404000), and Shanghai Municipal Natural Science Foundation (17ZR1412900).

Author information

Authors and Affiliations

Authors

Contributions

KG and GG designed this review. GG, KG, YW, and SD wrote the article. All authors revised the manuscript.

Corresponding author

Correspondence to Kunshan Gao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Chengchao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Gao, G., Wang, Y. et al. Impacts of ocean acidification under multiple stressors on typical organisms and ecological processes. Mar Life Sci Technol 2, 279–291 (2020). https://doi.org/10.1007/s42995-020-00048-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-020-00048-w

Keywords

Navigation