Abstract
How somatic cells develop into a whole plant is a central question in plant developmental biology. This powerful ability of plant cells is recognized as their totipotency. Somatic embryogenesis is an excellent example and a good research system for studying plant cell totipotency. However, very little is known about the molecular basis of cell reprogramming from somatic cells to totipotent cells in this process. During somatic embryogenesis from immature zygotic embryos in Arabidopsis, exogenous auxin treatment is required for embryonic callus formation, but removal of exogenous auxin inducing endogenous auxin biosynthesis is essential for somatic embryo (SE) induction. Ectopic expression of specific transcription factor genes, such as “LAFL” and BABY BOOM (BBM), can induce SEs without exogenous growth regulators. Somatic embryogenesis can also be triggered by stress, as well as by disruption of chromatin remodeling, including PRC2-mediated histone methylation, histone deacetylation, and PKL-related chromatin remodeling. It is evident that embryonic identity genes are required and endogenous auxin plays a central role for cell reprogramming during the induction of SEs. Thus, we focus on reviewing the regulation of cell reprogramming for somatic embryogenesis by auxin.

References
Antofie MM, Mitoi ME (2019) Lovastatin effects on indirect somatic embryogenesis of petunia. Rom Biotechnol Lett. https://doi.org/10.26327/RBL2018.246
Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260. https://doi.org/10.1093/mp/sss154
Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tiss Org 116:67–79. https://doi.org/10.1007/s11240-013-0383-2
Becwar MR, Noland TL, Wyckoff JL (1989) Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. Vitro Cell Dev 25:575–580. https://doi.org/10.1007/BF02623571
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM, Custers JB (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. https://doi.org/10.1105/tpc.001941
Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou JP, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. Plos Genet 7:e1002014. https://doi.org/10.1371/journal.pgen.1002014
Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473. https://doi.org/10.1073/pnas.0511331103
Casson SA, Lindsey K (2006) The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol 142:526–541. https://doi.org/10.1104/pp.106.080895
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276. https://doi.org/10.1242/dev.01400
Charrière F, Sotta B, Miginiac É, Hahne G (1999) Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol Biochem 37:751–757. https://doi.org/10.1016/S0981-9428(00)86688-7
Deng W, Luo KM, Li ZG, Yang YW (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48. https://doi.org/10.1016/j.plantsci.2009.03.009
Elhiti M, Tahir GRH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085. https://doi.org/10.1093/jxb/erq222
Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. Vitro Cell Dev PL 49:631–642. https://doi.org/10.1007/s11627-013-9547-3
El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbe H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326. https://doi.org/10.1007/s11103-010-9674-8
Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta Gene Regul Mech 1849:385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005
Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121. https://doi.org/10.1186/s12870-015-0479-4
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375. https://doi.org/10.1016/j.tplants.2007.06.007
Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988. https://doi.org/10.1007/s00425-005-0041-y
Gaj MD, Trojanowska A, Ujczak A, Medrek M, Koziol A, Garbaciak B (2006) Hormone-response mutants of Arabidopsis thaliana (L.) Heynh. impaired in somatic embryogenesis. Plant Growth Regul 49:183–197. https://doi.org/10.1007/s10725-006-9104-8
Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385. https://doi.org/10.1016/j.devcel.2004.06.017
Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261. https://doi.org/10.1105/tpc.4.10.1251
Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523. https://doi.org/10.1105/tpc.2.6.513
Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133:653–663. https://doi.org/10.1104/pp.103.023499
Heidmann I, De Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30:1107–1115. https://doi.org/10.1007/s00299-011-1018-x
Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005. https://doi.org/10.1104/pp.103.030148
Horstman A, Bemer M, Boutilier K (2017a) A transcriptional view on somatic embryogenesis. Regeneration 4:201–216. https://doi.org/10.1002/reg2.91
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutilier K (2017b) The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175:848–857. https://doi.org/10.1104/pp.17.00232
Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580. https://doi.org/10.1093/jxb/erf006
Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114. https://doi.org/10.1046/j.1365-313X.2003.01702.x
Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173. https://doi.org/10.1105/tpc.113.116053
Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, Ohnuma M, Breuer C, Morao AK, de Lucas M, de Veylder L, Goodrich J, Brady SM, Roudier F, Sugimoto K (2015) PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants 1:1–7. https://doi.org/10.1038/nplants.2015.89
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011a) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21:508–514. https://doi.org/10.1016/j.cub.2011.02.020
Iwase A, Ohme-Takagi M, Sugimoto K (2011b) WIND1: a key molecular switch for plant cell dedifferentiation. Plant Signal Behav 6:1943–1945. https://doi.org/10.4161/psb.6.12.18266
Jia H, McCarty DR, Suzuki M (2013) Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression. Plant Physiol 163:1293–1305. https://doi.org/10.1104/pp.113.220988
Jiménez VM, Guevara E, Herrera J, Bangerth F (2005) Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Rep 23:567–572. https://doi.org/10.1007/s00299-004-0869-9
Junker A, Mönke G, Rutten T, Keilwagen J, Seifert M, Thi TMN, Renou JP, Balzergue S, Viehöver P, Hähnel U, Ludwig-Müller J, Altschmied L, Conrad U, Weisshaar B, Bäumlein H (2012) Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J 71:427–442. https://doi.org/10.1111/j.1365-313X.2012.04999.x
Kamada H, Harada H (1979) Studies on the organogenesis in carrot tissue cultures I. Effects of growth regulators on somatic embryogenesis and root formation. Zeitschrift für Pflanzenphysiologie 91:255–266. https://doi.org/10.1016/S0044-328X(79)80099-9
Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507. https://doi.org/10.1007/s11033-009-9764-3
Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-toembryogenic transition in plants. J Chem Biol 2:177–190. https://doi.org/10.1007/s12154-009-0028-4
Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645. https://doi.org/10.1007/s00425-005-0114-y
Kobayashi T, Nagayama Y, Higashi K, Kobayashi M (2010) Establishment of a tissue culture system for somatic embryogenesis from germinating embryos of Arabidopsis thaliana. Plant Biotechnol 27:359–364. https://doi.org/10.5511/plantbiotechnology.27.359
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) Leafy cotyledon1-like defines a class of regulators essential for embryo development. Plant Cell 15:5–18. https://doi.org/10.1105/tpc.006973
Larsson E, Sitbon F, von Arnold S (2008) Polar auxin transport controls suspensor fate. Plant Signal Behav 3:469–470. https://doi.org/10.4161/psb.3.7.5676
Liu J, Deng SL, Wang H, Ye J, Wu HW, Sun HX, Chua NH (2016) CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol 171:424–436. https://doi.org/10.1104/pp.15.01335
Lotan T, Ohto MA, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205. https://doi.org/10.1016/S0092-8674(00)81463-4
Lowe K, Wu E, Wang N et al (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015. https://doi.org/10.1105/tpc.16.00124
Luerßen H, Kirik V, Herrmann P, Miséra S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764. https://doi.org/10.1046/j.1365-313X.1998.00259.x
Luo Y, Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202:387–439. https://doi.org/10.1007/s004250050141
Lutz KA, Azhagiri A, Maliga P (2011) Transplastomics in Arabidopsis: progress toward developing an efficient method. In Chloroplast Research in Arabidopsis. Methods Mol Biol 774:133–147. https://doi.org/10.1007/978-1-61779-234-2_9
Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636. https://doi.org/10.1104/pp.107.110379
Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353. https://doi.org/10.1104/pp.100.3.1346
Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M, Verdeil JL, Tregear JW (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362. https://doi.org/10.1007/s00425-007-0574-3
Mozgová I, Muñoz-Viana R, Hennig L (2017) PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLOS Genet 13:e1006562. https://doi.org/10.1371/journal.pgen.1006562
Mu J, Tan H, Hong S, Liang Y, Zuo J (2013) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant 6:188–201. https://doi.org/10.1093/mp/sss061
Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759. https://doi.org/10.1007/s004250000387
Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844. https://doi.org/10.1073/pnas.96.24.13839
O'Neill CM, Mathias RJ (1993) Regeneration of plants from protoplasts of Arabidopsis thaliana L. cv. Columbia (C24), via direct embryogenesis. J Exp Bot 44:1579–1585. https://doi.org/10.1093/jxb/44.10.1579
Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of Alfalfa. Plant Physiol 129:1807–1819. https://doi.org/10.1104/pp.00081
Pillon E, Terzi M, Baldan B, Mariani P, Lo Schiavo FL (1996) A protocol for obtaining embryogenic cell lines from Arabidopsis. Plant J 9:573–577. https://doi.org/10.1046/j.1365-313X.1996.09040573.x
Pullman GS, Mein J, Johnson S, Zhang Y (2005) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605. https://doi.org/10.1007/s00299-004-0880-1
Sangwan RS, Bourgeois Y, Dubois F, Sangwan-Norreel BS (1992) In vitro regeneration of Arabidopsis thaliana from cultured zygotic embryos and analysis of regenerants. J Plant Physiol 140:588–595. https://doi.org/10.1016/S0176-1617(11)80794-7
Schleiden MJ (1838) Beiträge zur Phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 1:137–176
Schwann T (1839) Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Sander, Berlin
Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404. https://doi.org/10.1007/s12229-010-9056-6
Shigo AL (1982) Tree decay in our urban forests: what can be done about it. Plant Dis 66:763–768
Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell. Am J Bot 45:705–708. https://doi.org/10.1002/j.1537-2197.1958.tb10599.x
Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811. https://doi.org/10.1073/pnas.201413498
Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156. https://doi.org/10.1073/pnas.0712364105
Su YH, Zhang XS (2014) The hormonal control of regeneration in plants. Curr Top Dev Biol 108:35–69. https://doi.org/10.1016/B978-0-12-391498-9.00010-3
Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x
Su YH, Su YX, Liu YG, Zhang XS (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176. https://doi.org/10.1007/s10725-012-9759-2
Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792. https://doi.org/10.3389/fpls.2014.00792
Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161. https://doi.org/10.1104/pp.107.111674
Tang LP, Zhou C, Wang SS, Yuan J, Zhang XS, Su YH (2017) FUSCA 3 interacting with LEAFY COTYLEDON 2 controls lateral root formation through regulating YUCCA 4 gene expression in Arabidopsis thaliana. New Phytol 213:1740–1754. https://doi.org/10.1111/nph.14313
Tognetti VB, Mühlenbock PER, Van Breusegem F (2012) Stress homeostasis–the redox and auxin perspective. Plant Cell Environ 35:321–333. https://doi.org/10.1111/j.1365-3040.2011.02324.x
Von Arnold S, Hakman I (1988) Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J Plant Physiol 132:164–169. https://doi.org/10.1016/S0176-1617(88)80155-X
Wang KLC, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950. https://doi.org/10.1038/nature02516
Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genom 16:301–323. https://doi.org/10.1186/s12864-015-1504-6
Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot Lond 57:443–462. https://doi.org/10.1093/oxfordjournals.aob.a087127
Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, Gaj M (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic inducton in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425–440. https://doi.org/10.1007/s00425-013-1892-2
Wójcikowska B, Botor M, Morończyk J, Wójcik AM, Nodzyński T, Karcz J, Gaj MD (2018) Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci 9:1353. https://doi.org/10.3389/fpls.2018.01353
Wu Y, Haberland G, Zhou C, Koop HU (1992) Somatic embryogenesis, formation of morphogenetic callus and normal development in zygotic embryos of Arabidopsis thaliana in vitro. Protoplasma 169:89–96. https://doi.org/10.1007/BF01323608
Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, Cao X, Zhao LJ (2014) Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plantarum 58:427–435. https://doi.org/10.1007/s10535-014-0420-y
Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628. https://doi.org/10.1016/j.ygeno.2007.07.007
Zhao Y (2014) Auxin biosynthesis. The Arabidopsis Book. American Society of Plant Biologists, Washington, p 12. https://doi.org/10.1199/tab.0173
Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577. https://doi.org/10.1105/tpc.109.068890
Acknowledgements
This work was funded by the National Natural Science Foundation of China (31670320, 31700248) and the Natural Science Foundation of Shandong Province (ZR2017JL016).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Tang, L.P., Zhang, X.S. & Su, Y.H. Regulation of cell reprogramming by auxin during somatic embryogenesis. aBIOTECH 1, 185–193 (2020). https://doi.org/10.1007/s42994-020-00029-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42994-020-00029-8