Skip to main content
Log in

Small-bodied mammal diversity facets vary discretely across an understudied ecotone in the western Amazon-Cerrado

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Tropical forests and savannahs worldwide are yielding to agribusiness, impacting biodiversity. In the southern Amazon deforestation arc, deforestation progress and limited study of extensive areas result in knowledge gaps on the impacts on biodiversity. We examined patterns of small-bodied mammal species diversity along a gradient ranging from closed-canopy to open-area savannahs, in the Guaporé river basin, Brazil. During one temporal replica—between December 2011 and October 2012—we sampled small mammals using live-traps in seven sites along three 1 km transects each. We assessed and predicted species alpha-diversity (within site), beta-diversity (unshared between sites), and zeta-diversity (shared) across the gradient, relating each biodiversity facets to the sites habitat structure, including vegetation height and above-ground biomass. From 202 individuals recorded, we uncovered 18 species in the region, whereas alpha-diversity was similar between sites, the species composition discretely shifted from non-floodable terra firme to open-areas of the transition zone southwards. Sites located at the intermediary zones of the north–south axis had lower beta-diversity contributions in comparison with northern- and southernmost sites, suggesting mixed biome influences. Zeta-diversity declined rapidly from closer sites to the more distant ones. Along the middle Guaporé basin, small mammal distribution correspondingly reflected the influence of the Cerrado and Amazon. Species presence—and cryptic diversity in terms of species not recorded yet—highlights conserving extensive habitats to accommodate diverse regional-local diversity needs, whereas both beta- and zeta-diversity patterns reveal that sites distinctiveness and multiple assemblages are required to safeguard the regional-scale diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available online in the Tables of this manuscript.

References

  • Ab’Sáber A (2003) Os domínios de natureza no Brasil potencialidades paisagísticas. Ateliê, São Paulo, SP

    Google Scholar 

  • Ab’Sáber A (2006) Ecossistemas do Brasil. Metalivros, São Paulo, SP

    Google Scholar 

  • Abreu M, Machado R, Barbieri F, Freitas NS, Oliveira LR (2013) Anomalous colour in Neotropical mammals: a review with new records for Didelphis sp. (Didelphidae, Didelphimorphia) and Arctocephalus australis (Otariidae, Carnivora). Braz J Biol 73:185–194

    Article  CAS  PubMed  Google Scholar 

  • Abreu-Jr EF, Casali DM, Garbino GST, Libardi GS, Loretto D, Loss AC, Marmontel M, Nascimento MC, Oliveira ML, Pavan SE, Tirelli FP (2022) Lista de Mamíferos do Brasil, versão 2022. Comitê de Taxonomia da Sociedade Brasileira de Mastozoologia (CT-SBMz). https://www.sbmz.org/mamiferos-do-brasil/

  • August PV (1983) The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64:1495–1507

    Article  Google Scholar 

  • Bellows AS, Pagels JF, Mitchell JC (2001) Macrohabitat and microhabitat affinities of small mammals in a fragmented landscape on the upper coastal plain of Virginia. Am Midl Nat 146(2):345–360

    Article  Google Scholar 

  • Bergallo HG, Magnusson WE (1999) Effects of climate and food availability on four rodent species in Southeastern Brazil. J Mammal 80:472–486

    Article  Google Scholar 

  • Bergamin RS, Bastazini VAG, Vélez-Martin E, Debastiani V, Zanini KJ, Loyola R, Müller SC (2017) Linking beta diversity patterns to protected areas: lessons from the Brazilian Atlantic Rainforest. Biodiv Conserv 26:1557–1568

    Article  Google Scholar 

  • Bezerra AM, Carmignotto AP, Rodrigues FH (2009) Small non-volant mammals of an ecotone region between the Cerrado hotspot and the Amazonian rainforest, with comments on their taxonomy and distribution. Zool Stud 48(6):861–874

    Google Scholar 

  • Bogoni JA (2023) The analytic progress on biodiversity measures: a brief remark. Braz J Mammal e92:1–6

    Google Scholar 

  • Bogoni JA, Peres CA, Ferraz KMPMB (2021a) Medium-to large-bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mamm Rev 52(2):221–235

    Article  Google Scholar 

  • Bogoni JA, Carvalho-Rocha V, Silva PG (2021b) Spatial and land-use determinants of bat species richness, functional diversity, and site uniqueness throughout the largest Tropical country, Brazil. Mamm Rev 52(2):267–283

    Article  Google Scholar 

  • Bogoni JA, Boron V, Peres CA, Coelho MEMS, Morato RG, Oliveira-da-Costa M (2023) Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon. Commun Biol 6:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho FMV, Fernandez FAS, Nessimian JL (2005) Food habits of sympatric opossums coexisting in small Atlantic Forest fragments in Brazil. Mamm Biol 70:366–375

    Article  Google Scholar 

  • Casagrande AF, Santos-Filho M (2019) Use of forest remnants and teak (Tectona grandis) plantations by small mammals in Mato Grosso, Brazil. Stud Neotrop Fauna Environ 54:181–190

    Article  Google Scholar 

  • Castro-Arellano I, Zarza H, Medellín RA (2000) Philander opossum. Mamm Species 638:1–8

    Article  Google Scholar 

  • Chao A, Chiu CH, Jost L (2014) Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu Rev Ecol Evol Syst 45:297–324

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18(1):117–143

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities an approach to statistical analysis and interpretation, 2nd edn. Plymouth Marine Laboratory, PRIMER-E, Ltd

    Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing null hypotheses in exploratory community analysis: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  • Costa LP, Leite YLR, Mendes SL, Ditchfield AD (2005a) Mammal conservation in Brazil. Conserv Biol 19(3):672–679

    Article  Google Scholar 

  • Costa LP, Leite YLR, Mendes SL, Ditchfield AD (2005b) Conservação De Mamíferos No Brasil. Megadiversidade 1(1):103–112

    Google Scholar 

  • da Cunha Bitar YO, Juen L, Pinheiro LC, Santos-Costa MCD (2015) Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon. J Herpetol 49(1):75–82

    Article  Google Scholar 

  • da Silva MNF, Shepard GH Jr, Yu D (2005) Conservation implications of primate hunting practices among the Matsigenka of Manu National Park. Neotrop Primates 13(2):31–31

    Article  Google Scholar 

  • de Lázari PR, Santos Filho M, Graipel ME, Canale GR (2013) Flood-mediated use of habitat by large and midsized mammals in Brazilian Pantanal. Biota Neotrop 13:70–75

    Article  Google Scholar 

  • Dobson AJ (1990) An introduction to generalized linear models. Chapman and Hall

    Book  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2023) adespatial: multivariate multiscale spatial analysis. R package version 0.3-21

  • Durant P (2001) Black-eared opossum Didelphis marsupialis (Linnaeus, 1758) from Mérida. Venezuela Zoocriadero 3(3):7–18

    Google Scholar 

  • Fearnside PM (2003a) Homem e ambiente na Amazônia. In: Fearnside PM (ed) A Floresta Amazônica nas Mudanças Globais. INPA, Manaus, pp 1–18

    Google Scholar 

  • Fearnside PM (2003b) Conservation policy in Brazilian Amazonia: understanding the dilemmas. World Dev 31(5):757–779

    Article  Google Scholar 

  • Fearnside PM, Righi CA, de Alencastro Graça PML, Keizer EW, Cerri CC, Nogueira EM, Barbosa RI (2009) Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia. Forest Ecol Manag 258(9):1968–1978

    Article  Google Scholar 

  • Filgueiras BKC, Peres CA, Melo FP, Leal IR, Tabarelli M (2021) Winner-Loser species replacements in human-modified landscapes. Trends Ecol Evol 36:545–555

    Article  PubMed  Google Scholar 

  • Gentile R, Fernandez FAS (1999) Influence of habitat structure on a streamside small mammal community in a Brazilian rural area. Mammalia 63(1):29–40

    Article  Google Scholar 

  • Hansen MC, Wang L, Song XP, Tyukavina A, Turubanova S, Potapov PV, Stehman SV (2020) The fate of tropical forest fragments. Sci Adv 6(11):eaax8574

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Haugaasen T, Peres CA (2005) Primate assemblage structure in Amazonian flooded and unflooded forests. Am J Primatol 67:243–258

    Article  PubMed  Google Scholar 

  • Heino J, Grönroos M (2017) Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183:151–160

    Article  ADS  PubMed  Google Scholar 

  • Heino J, García GJ, Hämäläinen S, Hellsten J, Ilmonen J, Karjalainen J et al (2022) Assessing the conservation priority of freshwater lake sites based on taxonomic, functional, and environmental uniqueness. Divers Distrib 28:1966–1978

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2019) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7(12):1451–1456

    Article  Google Scholar 

  • Hui C, McGeoch MA (2014) Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am Nat 184:684–694

    Article  PubMed  Google Scholar 

  • INPE (2023) Projeto PRODES - Monitoramento do desmatamento da floresta amazônica brasileira por satélite. 2023. http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes Accessed 1 Aug 2023.

  • IPAM (2019) Instituto de Pesquisa Ambiental da Amazônia (Institute of Environmental Research of the Amazon). https://ipam.org.br. Accessed 15 Jan 2019.

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Lambert TD, Adler GH, Riveros CM, Lopez L, Ascanio R, Terborgh J (2003) Rodents on tropical land-bridge islands. J Zool 260:179–187

    Article  Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C et al (2017) A vision for global monitoring of biological invasions. Biol Conserv 213:295–308

    Article  Google Scholar 

  • Latombe G, Lenzner B, Schertler A, Dullinger S, Glaser M, Jaric I, Pauchard A, Wilson JRU, Essl F (2022) What is valued in conservation? A framework to compare ethical perspectives. Neobiota 72:45–80

    Article  Google Scholar 

  • Lees AC, Peres CA (2008) Avian life history determinants of local extinction risk in a fragmented neotropical forest landscape. Anim Conserv 11:128–137

    Article  Google Scholar 

  • Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Scientific B.V, Amsterdam, p 853p

    Google Scholar 

  • Legendre P, Fortin MJ, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247

    Article  Google Scholar 

  • Magro TC, Griffith JJ, Aspiazu C (1992) Habitat: Uma metodologia de avaliação voltada para o planejamento. Instituto De Pesquisa e Estudos Florestais 45:14–21

    Google Scholar 

  • Malcolm MD (1995) Forest structure and the abundance and diversity of neotropical small mammals. In: Lowman MD, Nadkarni NM (eds) Forest Canopies. Academic Press, San Diego

    Google Scholar 

  • Mallmann AS, Finokiet M, Dalmaso AC, Melo GL, Ferreira VL, Cáceres NC (2011) Dinâmica populacional e reprodução de pequenos mamíferos de uma Floresta Estacional do Maciço do Urucum, oeste do Pantanal. Brasil Neotrop Biol Conserv 6(2):94–102

    Google Scholar 

  • Mangan SA, Adler GH (2000) Consumption of arbuscular mycorrhizal fungi by terrestrial and arboreal small mammals in a Panamanian cloud forest. J Mammal 81:563–570

    Article  Google Scholar 

  • MapBiomas (2022) MapBiomas Project – Collection v.7.0 of Brazil’s annual map series of land use and cover. 2022. http://mapbiomas.org Accessed 25 Feb 2023

  • Mares MA, Ernest KA (1995) Population and community ecology of small mammals in a gallery forest of central Brazil. J Mammal 76(3):750–768

    Article  Google Scholar 

  • Mattos I, Zimbres B, Marinho-Filho J (2021) Habitat specificity modulates the response of small mammals to habitat fragmentation, loss, and quality in a Neotropical Savanna. Front Ecol Evol 9:751315

    Article  Google Scholar 

  • Mead A (1992) Review of the development of multidimensional scaling methods. J R Stat Soc Series D Stat Methodol 41(1):27–39

    MathSciNet  Google Scholar 

  • Michalski F, Peres CA (2007) Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv Biol 6:1626–1640

    Article  Google Scholar 

  • MMA (2008) Biodiversidade Brasileira; Avaliação e identificação de áreas e ações prioritárias para conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37(1):17–23

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  ADS  CAS  PubMed  Google Scholar 

  • Naiman RJ, Decamps H, McClain ME (2010) Riparia: ecology, conservation, and management of streamside communities. Bioscience 56(4):353–354

    Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F, Nin E (2008) Interactions among Amazon land use, forests, and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B 363:1737–1746

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: Community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan

  • Oliveira EF, Goulart E, Minte-Vera CV (2004) Fish diversity along spatial gradients in the Itaipu reservoir, Paraná. Brazil Braz J Biol 64(3):447–458

    Article  CAS  PubMed  Google Scholar 

  • Palmeirim AF, Benchimol M, Morante-Filho JC, Vieira MV, Peres CA (2018) Ecological correlates of mammal β-diversity in Amazonian land-bridge islands: from small- to large-bodied species. Divers Distrib 24:1109–1120

    Article  Google Scholar 

  • Palmeirim AF, Benchimol M, Peres CA, Vieira MV (2019) Moving forward on the sampling efficiency of neotropical small mammals: insights from pitfall and camera trapping over traditional live trapping. Mammal Res 64:445–454

    Article  Google Scholar 

  • Palmeirim AF, Peres CA, Vieira MV (2020) Optimizing small mammal surveys in Neotropical fragmented landscapes while accounting for potential sampling bias. Mamm Biol 100:81–90

    Article  Google Scholar 

  • Patton JL, da Silva MN (1997) Definition of species of pouched four-eyed opossums (Didelphidae, Philander). J Mammal 78(1):90–102

    Article  Google Scholar 

  • Patton JL, da Silva MNF, Malcolm JR (2000) Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bull Am Mus Nat Hist 244:3–293

    Article  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierangeli MAP, Eguchi ES, Ruppin RF, Costa RBF, Vieira DF (2009) Teores de As, Pb, Cd e Hg e fertilidade de solos da região do Vale do Alto Guaporé, sudoeste do estado de Mato Grosso. Acta Amazon 39:61–70

    Article  CAS  Google Scholar 

  • Pires GF, Costa MH (2013) Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geo Res Let 40(14):3618–3623

    Article  ADS  Google Scholar 

  • Potapov P, Li X, Hernandez-Serna A, Tyukavina A et al (2020) Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Remote Sens Environ 253:112165. https://doi.org/10.1016/j.rse.2020.112165

    Article  Google Scholar 

  • Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller I et al (2020) Indirect effects of loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol Conserv 241:108368

    Article  Google Scholar 

  • Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecol Biogeogr 18:327–332

    Article  Google Scholar 

  • R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Redford KH, Fonseca GAB (1986) The role of gallery forests in the zoogeography of the Cerrado’s non-volant mammalian fauna. Biotropica 18(2):126–135

    Article  Google Scholar 

  • Rodrigues AA, Macedo MN, Silvério DV, Maracahipes L et al (2022) Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Global Change Biol 28(22):6807–6822

    Article  CAS  Google Scholar 

  • Ross JL (2006) Ecogeografia do Brasil: Subsídios para planejamento ambiental. Oficina de Textos, São Paulo, SP

    Google Scholar 

  • Rossi RV, Bianconi GV, Pedro WA (2006) Ordem Didelphimorphia. In: Peracchi LA, Pedro WA, Lima IP (eds) Reis NR. Mamíferos do Brasil (Universidade Estadual de Londrina, Londrina, pp 27–66

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  ADS  CAS  PubMed  Google Scholar 

  • Santos-Filho M, Silva DJ, Sanaiotti TM (2008a) Variação sazonal na riqueza e na abundância de pequenos mamíferos, na estrutura da floresta e na disponibilidade de artrópodes em fragmentos florestais no Mato Grosso. Biota Neotrop 8. https://doi.org/10.1590/S1676-06032008000100014

    Article  Google Scholar 

  • Santos-Filho M, da Silva DJ, Sanaiotti TM (2008b) Edge effects and landscape matrix use by a small mammal community in fragments of semideciduous submontane forest in Mato Grosso. Brazil Braz J Biol 68(4):703–710

    Article  CAS  PubMed  Google Scholar 

  • Santos-Filho M, Frieiro-Costa F, Ignácio ÁRA, Silva MNF (2012a) Use of habitats by non-volant small mammals in Cerrado in Central Brazil. Braz J Biol 72:893–902

    Article  CAS  PubMed  Google Scholar 

  • Santos-Filho M, Peres CA, da Silva DJ, Sanaiotti TM (2012b) Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. Biodiver Conserv 21:1127–1147

    Article  Google Scholar 

  • Santos-Filho M, Lázari PRD, Sousa CPFD, Canale GR (2015) Trap efficiency evaluation for small mammals in the southern Amazon. Acta Amazon 45:187–194

    Article  Google Scholar 

  • Sikes RS (2016) 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva PG, Bogoni JA, Heino J (2020) Can taxonomic and functional metrics explain variation in the ecological uniqueness of ecologically associated animal groups in a modified rainforest? Sci Total Environ 708:135171

    Article  ADS  PubMed  Google Scholar 

  • Silva-Pereira I, Meira-Neto JAA, Rezende VL, Eisenlohr PV (2020) Biogeographic transitions as a source of high biological diversity: phylogenetic lessons from a comprehensive ecotone of South America. Perspect Plant Ecol Evol 44:125528

    Article  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinform 22(12):1540–1542

    Article  CAS  Google Scholar 

  • Vieira MF, Carvalho-Okano RM, Sazima M (1991) The common opossum (Didelphis marsupialis), as a pollinator of Mabea fistulifera (Euphorbiaceae). Ciência e Cultura 43:390–393

    Google Scholar 

  • Whitaker D, Christman M (2010) clustsig: Significant Cluster Analysis. R package. http://CRAN.R-project.org/package=clustsig.

  • Wright SJ, Gompper ME, DeLeon B (1994) Are large predators keystone species in neotropical forests? The evidence from Barro Colorado Island. Oikos 71:279–294

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We extend our thanks to the “Uso sustentável e Bioprospecção da Biodiversidade na Amazônia Meridional/Rede BIONORTE” project for their invaluable logistical support and research funding. Our appreciation also goes to CNPq for providing scholarships. Special thanks are extended to Genésio, Sarita, Paulo, Fernando, Roberto—the farm managers—for their essential logistical assistance and for permission for sampling on their properties. Lastly, we express our thanks to Patrick Ricardo de Lázari and Welvis Felipe F. Castilheiro for their dedicated field support.

Funding

Master-degree scholarship to Robson Flores de Oliveira (CNPq Bionorte project). This research p was feasible due to CNPq (no 55433020/2010-5) and FAPEMAT (n° 205983/2011) grants through the Brazilian BioNorte Network for Biodiversity and Biotechnology of the Legal Amazon, project “Conservation, use and bioprospecting of the biodiversity of southern Amazon—Mato Grosso State”. AFP was supported by the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 854248 (TROPIBIO).

Author information

Authors and Affiliations

Authors

Contributions

RFO: data acquisition and manuscript editing; MSF: sampling design, data acquisition, writing and major editing; AFP: data analysis, writing and major editing; JAB: data analysis, figures and wrote the manuscript draft.

Corresponding author

Correspondence to Juliano A. Bogoni.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Handling editor: Tatiana Kiener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42991_2023_393_MOESM1_ESM.pdf

Supplementary file1 Supplementary Material 1. Rarefaction (interpolation-extrapolation) curves to explore difference and sampling coverage in small-bodied mammals richness across the Guaporé River basin, an ecotone zone across Amazon-Cerrado in southwest of Mato Grosso state (Brazil). Sites acronyms are contained included in manuscript Table 1. (PDF 151 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.F., dos Santos-Filho, M., Palmeirim, A.F. et al. Small-bodied mammal diversity facets vary discretely across an understudied ecotone in the western Amazon-Cerrado. Mamm Biol 104, 129–140 (2024). https://doi.org/10.1007/s42991-023-00393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-023-00393-0

Keywords

Navigation