Abstract
South American subterranean rodents of the genus Ctenomys are among the most diverse mammals at the species level, integrating a monotypic family of recent origin. Contrasting with their general morphological conservatism, chromosome variability is very high. Also, molecular data showed a shallow genetic divergence within several species groups with mitochondrial markers, leaving doubts about the taxonomic status of some lineages and the evolutionary significance of their chromosomal diversity. Here, we reviewed and reanalysed published chromosome data of Ctenomys and contrasted it with molecular data, including ancestral chromosomal state reconstructions in a phylogenetic hypothesis based on mitochondrial cytochrome b gene sequences. One hundred seventy-eight different chromosome complements were recorded for 48 Ctenomys species. Some species are polymorphic and/or polytypic, with differentiated populations. Both 2n and FNa showed a wide variation, but FNa had a greater dispersion. With the exceptions of C. lessai and C. maulinus, in all other species, the X chromosome is biarmed. The Y chromosome is quite variable in morphology and size. In general, biarmed and uniarmed autosomes within karyotypes are nearly equally represented, departing from the pattern of other mammals. This may be due to fast-evolving heterochromatin. The chromosomal reconstructions suggest that the ancestral karyotype of the genus could have had an intermediate 2n and high FNa. Most of the species groups recovered in the phylogeny show wide chromosomal variability, the most extreme being the torquatus group. This diversity was apparently generated in a short time, indicating an accelerated rate of chromosome evolution in this clade and the whole family.
Similar content being viewed by others
References
Anderson S, Yates TL, Cook JA (1987) Notes on Bolivian Mammals 4: the genus Ctenomys in the Eastern Lowlands. Am Mus Novit 2891:1–20
Argüelles CF, Suárez P, Giménez MD, Bidau CJ (2001) Intraspecific chromosome variation between different populations of Ctenomys dorbignyi (Rodentia, Ctenomyidae) from Argentina. Acta Theriol 46:363–373. https://doi.org/10.1007/BF03192443
Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662. https://doi.org/10.1644/06-MAMM-F-038R2.1
Basheva EA, Torgasheva AA, Gómez Fernández MJ, Boston E, Mirol P, Borodin PM (2014) Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae). Chromosome Res 22:351–363. https://doi.org/10.1007/s10577-014-9429-5
Bidau CJ (2006). Familia Ctenomyidae. In: Barquez RM, Díaz MM, Ojeda RA (eds) Mamíferos de Argentina: sistemática y distribución, 212– 31. Tucumán: Sociedad Argentina para el Estudio de los Mamíferos, pp 359
Bidau CJ (2015) Family Ctenomyidae Lesson, 1842. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America. The University of Chicago Press, Chicago, pp 818–877
Bidau CJ, Martí DA (2004) B chromosomes and Robertsonian fusions of Dichroplus pratensis (Acrididae): intraspecific support for the centromeric drive theory. Cytogenet Genome Res 106:347–350. https://doi.org/10.1159/000079311
Braggio E, Gimenez MD, Contreras JR, Justo E, Bidau CJ (1999) Karyotypic variation in populations of Ctenomys (Rodentia, Ctenomyidae) from La Pampa Province, Argentina. Caryologia 52:131–140. https://doi.org/10.1080/00087114.1998.10589163
Britton-Davidian J, Caminade P, Davidian E, Pagès M (2017) Does chromosomal change restrict gene flow between house mouse populations (Mus musculus domesticus)? Evidence from microsatellite polymorphisms. Biol J Linn Sc 122:224–240. https://doi.org/10.1093/biolinnean/blx053
Buschiazzo LM, Caraballo DA, Cálcena E, Longarzo ML, Labaroni CA, Ferro JM, Rossi MS, Bolzán AD, Lanzone C (2018) Integrative analysis of chromosome banding, telomere localisation and molecular genetics in the highly variable Ctenomys of the Corrientes group (Rodentia; Ctenomyidae). Genetica 146:403–414. https://doi.org/10.1007/s10709-018-0032-0
Caraballo DA, Rossi MS (2018a) Integrative lineage delimitation in rodents of the Ctenomys Corrientes group. Mammalia 82:35–47. https://doi.org/10.1515/mammalia-2016-0162
Caraballo DA, Rossi MS (2018b) Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys. Contrib Zool 87:11–24
Caraballo DA, Belluscio PM, Rossi MS (2010) The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Ibera marsh, Argentina. Genetica 138:1201–1210. https://doi.org/10.1007/s10709-010-9516-2
Caraballo DA, Abruzzese GA, Rossi MS (2012) Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution. Genetica 140:125–136. https://doi.org/10.1007/s10709-012-9664-7
Caraballo DA, Jablonski PC, Rebagliati PJ, Rossi MS (2015) Chromosomal variability in tuco-tucos (Ctenomys, Rodentia) from the Argentinean northeastern wetlands. Mastozool Neotrop 22:289–301
Caraballo DA, Tomasco IH, Campo DH, Rossi MS (2016) Phylogenetic relationships between tuco-tucos (Ctenomys, Rodentia) of the Corrientes group and the C. pearsoni complex. Mastozool Neotrop 23:39–49
Caraballo DA, López SL, Carmarán AA, Rossi MS (2020) Conservation status, protected area coverage of Ctenomys (Rodentia, Ctenomyidae) species and molecular identification of a population in a national park. Mamm Biol 100:33–47. https://doi.org/10.1007/s42991-019-00004-x
Carnovale CS, Fernández GP, Merino ML, Mora MS (2021) Redefining the distributional boundaries and phylogenetic relationships for Ctenomids from central Argentina. Front Genet 12:698134. https://doi.org/10.3389/fgene.2021.698134
Castiglia R, Garagna S, Merico V, Oguge N, Corti M (2006) Cytogenetics of a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14:587–594
Castillo AH, Cortinas MN, Lessa EP (2005) Rapid diversification of South American tuco-tucos (Ctenomys; Rodentia, Ctenomyidae): contrasting mitochondrial and nuclear intron sequences. J Mammal 86:170–179. https://doi.org/10.1644/1545-1542(2005)086%3c0170:9RDOSAT%3e2.0.CO;2
Clark FE, Akera T (2021) Unravelling the mystery of female meiotic drive: where we are. Open Biol 11:210074
Cook JA, Anderson S, Yates TL (1990) Notes on Bolivian Mammals 6: the genus Ctenomys (Rodentia: Ctenomyidae) in the Highlands. Am Mus Novit 2980:1–27
D’Anatro A, D’Elía G (2011) Incongruent patterns of morphological, molecular, and karyotipic variation among populations of Ctenomys pearsoni Lessa and Langguth, 1983 (Rodentia, Ctenomyidae). Mamm Biol 76:36–40. https://doi.org/10.1016/j.mambio.2010.01.008
Da Rosa FA, Ojeda AA, Novillo AA, Labaroni CA, Buschiazzo LM, Teta P, Cálcena EN, Bolzán AD, Ojeda RA, Lanzone C (2019) Chromosome variability and evolution in rodents of the tribe Abrotrichini (Rodentia, Cricetidae, Sigmodontinae). Mamm Res 65:59–67. https://doi.org/10.1007/s13364-019-00463-0
de Freitas TRO (1994) Geographic variation of heterochromatin in Ctenomys flamarioni (Rodentia: Octodontidae) and its cytogenetic relationship with other species of the genus. Cytogenet Cell Genet 67:193–198. https://doi.org/10.1159/000133821
de Freitas TRO (2007) Ctenomys lami: the highest chromosome variability in Ctenomys (Rodentia, Ctenomyidae) due to a centric fusion/fission and pericentric inversion system. Acta Theriol 52:171–180. https://doi.org/10.1007/BF03194212
de Freitas TRO (2016) Family Ctenomyidae (Tuco-tucos). In: Wilson DE, Lacher TE Jr, Mittermeier RA (eds) Handbook of mammals of the world, Lagomorphs and Rodents I, vol 6. Lynx Edicions Publications, Barcelona, pp 1–900
de Freitas TRO (2021) Speciation within the genus Ctenomys: an attempt to find models. In: de Freitas TRO, Gonçalves GL, Maestri R (eds) Tuco-tucos: an evolutionary approach to the diversity of a Neotropical subterranean rodent. Springer Nature, pp 43–66
de Freitas TRO, Fernandes FA, Fornel R, Roratto PA (2012) An endemic new species of tuco-tuco, genus Ctenomys (Rodentia: Ctenomyidae), with a restricted geographic distribution in southern Brazil. J Mammal 93:1355–1367. https://doi.org/10.1644/12-MAMM-A-007.1
D'Elía G, Teta P, Lessa EP (2021) A short overview of the systematics of Ctenomys: species limits and phylogenetic relationships. In: de Freitas TRO, Gonçalves GL, Maestri R (eds) Tuco-tucos: an evolutionary approach to the diversity of a Neotropical subterranean rodent. Springer Nature, pp 17–41. https://doi.org/10.1007/978-3-030-61679-3
De Santi NA, Verzi DH, Olivares AI, Piñero P, Álvarez A, Morgan CC (2021) A new Pleistocene Ctenomys and divergence dating of the hyperdiverse South American rodent family Ctenomyidae. J Sys Palaeontol 19:377–392. https://doi.org/10.1080/14772019.2021.1910583
Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V (2005) Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity 95:358–368. https://doi.org/10.1038/sj.hdy.6800730
Ellingsen A, Slamovits CH, Rossi MS (2007) Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia). Gene 392:283–290. https://doi.org/10.1016/j.gene.2007.01.013
Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669. https://doi.org/10.1016/j.tree.2010.07.008
Fernandes FA, Goncalves GL, Ximenes SSF, de Freitas TRO (2009) Karyotypic and molecular polymorphisms in Ctenomys torquatus (Rodentia: Ctenomyidae): taxonomic considerations. Genetica 136:449–459. https://doi.org/10.1007/s10709-008-9345-8
Gardner SL, Salazar-Bravo J, Cook JA (2014) New species of Ctenomys Blainville 1826 (Rodentia: Ctenomyidae) from the lowlands and central valleys of Bolivia. Special Publications of the Museum of the Texas Tech University 62:1–34
Gava A, de Freitas TRO (2003) Inter and intra-specific hybridisation in tuco-tucos (Ctenomys) from Brazilian coastal plains (Rodentia: Ctenomyidae). Genetica 119:11–17. https://doi.org/10.1023/A:1024465429856
Giménez MD, Bidau CJ, Argüelles CF, Contreras JR (1999) Chromosomal characterization and relationship between two new species of Ctenomys (Rodentia, Ctenomyidae) from northern Córdoba province, Argentina. Mamm Biol 64:91–106
Giménez MD, Mirol PM, Bidau CJ, Searle JB (2002) Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet Genome Res 96:130–136. https://doi.org/10.1159/000063051
Goloboff P, Catalano S (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221–238. https://doi.org/10.1111/cla.12160
Haffer J (1986) Superspecies and species limits in vertebrates. Z Zool Syst Evol Res 24:169–190. https://doi.org/10.1111/j.1439-0469.1986.tb00626.x
Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618
Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102
King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz305
Kubiak BB, Kretschmer R, Leipnitz LT, Maestri R, Almeida TS, Borges LR, Galiano D, Pereira JC, Oliveira EHC, Ferguson-Smith MA, Freitas TRO (2020) Hybridisation between subterranean tuco-tucos (Rodentia, Ctenomyidae) with contrasting phylogenetic positions. Sci Rep 10:1502. https://doi.org/10.1038/s41598-020-58433-5
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
Lanzone C, Bidau CJ, Giménez MD, Santos JL (2002) Synaptic behaviour and morphological modifications of the X and Y chromosomes during pachytene in three species of Ctenomys (Rodentia, Caviomorpha, Ctenomyidae). Genome 45:1110–1115. https://doi.org/10.1139/g02-075
Lanzone C, Giménez MD, Santos JL, Bidau CJ (2007) Meiotic effects of Robertsonian translocations in tuco-tucos of the Ctenomys perrensi superspecies (Rodentia: Ctenomyidae). Caryologia 60:233–244. https://doi.org/10.1080/00087114.2007.10797942
Lanzone C, Ojeda AA, Ojeda RA, Albanese S, Rodríguez D, Dacar MA (2011) Integrated analyses of chromosome, molecular and morphological variability in the Andean mice Eligmodontia puerulus and E. moreni (Rodentia, Cricetidae, Sigmodontinae). Mamm Biol 76:555–562. https://doi.org/10.1016/j.mambio.2011.02.008
Lanzone C, Labaroni CA, Suárez N, Rodríguez D, Herrera ML, Bolzán AD (2015) Distribution of telomeric sequences (TTAGGG)n in rearranged chromosomes of phyllotine rodents (Cricetidae, Sigmodontinae). Cytogenet Genome Res 147:247–252. https://doi.org/10.1159/000444602
Lanzone C, Cardozo D, Sánchez DM, Martí DA, Ojeda RA (2016) Chromosomal variability and evolution in the tribe Phyllotini (Rodentia, Cricetidae, Sigmodontinae). Mammal Res 61:373–382. https://doi.org/10.1007/s13364-016-0286-9
Leipnitz LT, Fornel R, Ribas LEJ, Kubiak BB, Galiano D, de Freitas TRO (2020) Lineages of tuco-tucos (Ctenomyidae: Rodentia) from midwest and northern Brazil: late irradiations of subterranean rodents towards the Amazon Forest. J Mamm Evol 27:161–176. https://doi.org/10.1007/s10914-018-9450-0
Lessa EP, Cook JA (1998) The molecular phylogenetics of tuco-tucos, genus Ctenomys (Rodentia: Octodontidae) suggests an early burst of speciation. Mol Phylogenet Evol 9:88–99. https://doi.org/10.1023/A:1020586229342
Lizarralde M, Bolzán A, Bianchi M (2003) Karyotype evolution in South American subterranean rodents Ctenomys magellanicus (Rodentia: Octodontidae): chromosome rearrangements and (TTAGGG)n telomeric sequence localisation in 2n = 34 and 2n = 36 chromosomal forms. Hereditas 139:13–17. https://doi.org/10.1111/j.1601-5223.2003.01696.x
Londoño-Gaviria M, Teta P, Ríos SD, Patterson BD (2019) Redescription and phylogenetic position of Ctenomys dorsalis Thomas 1900, an enigmatic tuco tuco (Rodentia, Ctenomyidae) from the Paraguayan Chaco. Mammalia 83:227–236. https://doi.org/10.1515/mammalia-2018-0049
Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718
Malleret MM, Labaroni CA, García GV, Ferro JM, Martí DA, Lanzone C (2016) Chromosomal variation in Argentine populations of Akodon montensis Thomas, 1913 (Rodentia, Cricetidae, Sigmodontinae). Comp Cytogenet 10:129–140. https://doi.org/10.3897/CompCytogen.v10i1.6420
Mapelli FJ, Mora MS, Lancia JP, Gómez Fernández MJ, Mirol PM, Kittlein MJ (2017) Evolution and phylogenetic relationships in subterranean rodents of the Ctenomys mendocinus species complex: effects of Late Quaternary landscape changes of Central Argentina. Mamm Biol 87:130–142. https://doi.org/10.1016/j.mambio.2017.08.002
Marshall Graves JA (2006) Sex chromosome specialisation and degeneration in mammals. Cell 124:901–914. https://doi.org/10.1016/j.cell.2006.02.024
Mascheretti S, Mirol PM, Giménez MD, Bidau CJ, Contreras JR, Searle JB (2000) Phylogenetics of the speciose and chromosomally variable rodent genus Ctenomys (Ctenomyidae, Octodontoidea), based on mitochondrial cytochrome b sequences. Biol J Linn Sc 70:361–376. https://doi.org/10.1111/j.1095-8312.2000.tb00215.x
Massarini AI, de Freitas TRO (2005) Morphological and cytogenetics comparison in species of the Mendocinus-group (genus Ctenomys) with emphasis in C. australis and C. flamarioni (Rodentia-Ctenomyidae). Caryologia 58(1):21–27. https://doi.org/10.1080/00087114.2005.10589427
Massarini AI, Barros MA, Ortells MO, Reig OA (1991) Chromosomal polymorphism and small karyotypic differentiation in a group of Ctenomys species from Central Argentina (Rodentia: Octodontidae). Genetica 83:131–144. https://doi.org/10.1007/BF00058530
Massarini AI, Dyzenchauz FJ, Tiranti SI (1998) Geographic variation of chromosomal polymorphism in nine populations of Ctenomys azarae, tuco-tucos of the Ctenomys mendocinus group (Rodentia: Octodontidae). Hereditas 128:207–211. https://doi.org/10.1111/j.1601-5223.1998.00207.x
Novello A, Villar S (2006) Chromosome plasticity in Ctenomys (Rodentia, Octodontidae): chromosome 1 evolution and heterochromatin variation. Genetica 127:303–309. https://doi.org/10.1007/s10709-005-5048-6
Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala
Ojeda AA, Teta P, Jayat JP, Lanzone C, Cornejo P, Novillo AA, Ojeda RA (2021) Phylogenetic relationships among cryptic species of the Phyllotis xanthopygus complex (Rodentia, Cricetidae). Zool Scr 50:269–281. https://doi.org/10.1111/zsc.12472
Ortells M (1995) Phylogenetic analysis of G-banded karyotypes among the South American subterranean rodents of the genus Ctenomys (Caviomorpha: Octodontidae), with special reference to chromosomal evolution and speciation. Biol J Linn Soc 54:43–70. https://doi.org/10.1111/j.1095-8312.1995.tb01022.x
Parada A, D’Elía G, Bidau CJ, Lessa EP (2011) Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J Mammal 92:671–682. https://doi.org/10.1644/10-MAMM-A-121.1
Parededa MG, Novello A (2012) Chromosome mosaicism: extreme karyotype variation in the genus Ctenomys from Uruguay (Rodentia: Ctenomydae). Caryologia 65:251–257. https://doi.org/10.1080/00087114.2012.752907
Pardo-Manuel de Villena F, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189. https://doi.org/10.1093/genetics/159.3.1179
Patton JL, Sherwood SW (1983) Chromosome evolution and speciation in rodents. Ann Rev Ecol Syst 14:139–158. https://doi.org/10.1146/annurev.es.14.110183.001035
Piálek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Lin Soc 84:535–563. https://doi.org/10.1111/j.1095-8312.2005.00454.x
Reig OA (1989) Karyotypic repatterning as a triggering factor in cases of explosive speciation. In: Fontdevila A (ed) Evolutionary biology of unstable populations. Springer Verlag, Berlin, pp 246–289
Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 97–128
Reig OA, Massarini AI, Ortells MO, Barros MA, Tiranti SI, Dyzenchauz FJ (1992) New karyotypes and C-banding patterns of the subterranean rodents of the genus Ctenomys (Caviomorpha, Octodontidae) from Argentina. Mammalia 56:603–623. https://doi.org/10.1515/mamm.1992.56.4.603
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS (2012) Chromosomal evolution in Rodentia. Heredity 108:4–16. https://doi.org/10.1038/hdy.2011.110
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
Roratto PA, Fernandes FA, de Freitas TRO (2015) Phylogeography of the subterranean rodent Ctenomys torquatus: an evaluation of the riverine barrier hypothesis. J Biogeogr 42:694–705. https://doi.org/10.1111/jbi.12460
Rossi MS, Reig OA, Zorzopoulos J (1990) Evidence for rolling-circle replication in a major satellite DNA from the South American rodents of the genus Ctenomys. Mol Biol Evol 7:340–350. https://doi.org/10.1093/oxfordjournals.molbev.a040606
Rossi MS, Redi CA, Viale G, Massarini AL, Capanna E (1995) Chromosomal distribution of the major satellite DNA of South American rodents of the genus Ctenomys. Cytogenet Cell Genet 69:179–184. https://doi.org/10.1159/000133956
Sánchez TR, Tomasco IH, Díaz MM, Barquez RM (2019) Contribution to the knowledge of the rare “Famatina tuco-tuco”, Ctenomys famosus Thomas 1920 (Rodentia: Ctenomyidae). Mammalia 83:11–22. https://doi.org/10.1515/mammalia-2017-0131
Slamovits CH, Cook JA, Lessa EP, Rossi MS (2001) Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (Genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Mol Biol Evol 18:1708–1719. https://doi.org/10.1093/oxfordjournals.molbev.a003959
Stein BE (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. The Univ. of Chicago Press, Chicago, pp 19–61
Suárez-Villota EY, Pansonato-Alves JC, Foresti F, Gallardo MH (2014) Homomorphic sex chromosomes and the intriguing Y chromosome of Ctenomys rodent species (Rodentia, Ctenomyidae). Cytogenet Genome Res 143:232–240. https://doi.org/10.1159/000366173
Swier VJ, Bradley RD, Elder FFB, Baker RJ (2019) Primitive karyotype for Muroidea: evidence from chromosome paints and fluorescent G-bands. In: Bradley RD, Genoways HH, Schmidly DJ, Bradley LC (eds) From field to laboratory: a memorial volume in honor of Robert J. Baker. Special Publications, Museum of Texas Tech University, pp 629–641
Tammone MN, Pardiñas UFJ (2021) Valle de las Cuevas and Fuerte de San Rafael (Mendoza, Argentina), two elusive type localities of rodents revisited. Mastozool Neotr 28:1–8. https://doi.org/10.31687/saremMN.21.28.1.0.02
Tammone MN, Lacey EA, Voglino D, Cuellar Soto E, Pardinas UFJ (2021) Disentangling the complex alpha taxonomy of Andean populations of Ctenomys (Rodentia: Ctenomyidae) from northern Patagonia: the need for extensive sampling in heterogeneous landscapes. Mamm Biol. https://doi.org/10.1093/jmammal/gyab089
Teta P, D'Elía G (2020) Uncovering the species diversity of subterranean rodents at the end of the World: three new species of Patagonian tuco-tucos (Rodentia, Hystricomorpha, Ctenomys). Peer J 8:e9259 https://doi.org/10.7717/peerj.9259
Teta P, D'Elía G, Opazo JC (2020) Integrative taxonomy of the southernmost tucu‑tucus in the world: differentiation of the nominal forms associated with Ctenomys magellanicus Bennett, 1836 (Rodentia, Hystricomorpha, Ctenomyidae). Mamm Biol 100:125–139. https://doi.org/10.1007/s42991-020-00015-z
Tiranti SI, Dyzenchauz FJ, Hasson ER, Massarini AI (2005) Evolutionary and systematic relationships among tuco-tucos of the Ctenomys pundti complex (Rodentia: Octodontidae): a cytogenetic and morphological approach. Mammalia 69:69–80. https://doi.org/10.1515/mamm.2005.006
Torgasheva AA, Basheva EA, Gómez Fernández MJ, Mirol P, Borodin PM (2017) Chromosomes and speciation in tuco-tuco (Ctenomys, Hystricognathi, Rodentia). Russ J Genet Appl Res 7:350–357. https://doi.org/10.1134/S2079059717040128
Upham NS, Patterson BD (2015) Evolution of caviomorph rodents: A complete phylogeny and timetree for living genera. In: Vasallo AI, Antenucci D (eds) Biology of caviomorph rodents: Diversity and evolution. SAREM Series A, Mammalogical Research, Volume 1, Buenos Aires, pp 63–120
Vitullo AD, Roldan ERS, Merani MS (1988) On the morphology of spermatozoa of tuco-tucos, Ctenomys (Rodentia: Ctenomyidae): New data and its implications for the evolution of the genus. J Zool 215:675–683. https://doi.org/10.1111/j.1469-7998.1988.tb02403.x
Yoshida K, Kitano J (2012) The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 66:3198–3208. https://doi.org/10.1111/j.1558-5646.2012.01681.x
Acknowledgements
We are very grateful to Dr. Claudio J. Bidau for making us see the world through the light of evolution and transmitting his passion for knowledge. We thank the anonymous referees for their critical review of an early version of this paper. The authors thank to the Consejo Nacional de Investigaciones Científicas y Técnicas. This work was partially financed by PIP-CONICET 2015-0258 CO, PICT 2016-0537, and PICT 2020-01989.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Handling editor: Svetlana Pavlova.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
In Memoriam: Claudio J. Bidau.
Supplementary Information
Below is the link to the electronic supplementary material.
42991_2022_312_MOESM1_ESM.jpg
Supplementary file1 Complete phylogenetic hypothesis obtained by the Bayesian analysis of the molecular dataset of cytochrome b gene sequences. Species groups recovered are in boxes. Numbers above the nodes are posterior probabilities in the Bayesian inference (JPG 7714 KB)
42991_2022_312_MOESM2_ESM.jpg
Supplementary file2 Phylogenetic hypothesis obtained by the Maximum Parsimony analysis of the molecular dataset of cytochrome b gene sequences. Species groups recovered are in boxes. Numbers below the nodes are bootstrap supports (JPG 5688 KB)
42991_2022_312_MOESM3_ESM.jpg
Supplementary file3 Phylogenetic hypothesis obtained by the Maximun Likelihood analysis of the molecular dataset of cytochrome b gene sequences. Species groups recovered are in boxes. Numbers below the nodes are bootstrap supports (JPG 7681 KB)
42991_2022_312_MOESM4_ESM.xlsx
Supplementary file4 Diploid number (2n), fundamental number of autosomal arms (FNa), number of autosomes (NA), number of bi-armed and acrocentric chromosomes, % of acrocentric chromosomes, morphology, and size of sex chromosomes (meta= metacentric, submeta=submetacentric, subtelo= subtelocentric, acro= acrocentric), and bibliographic references. Names between parenthesis correspond to those used in the original references. In quotation marks are informal names. In bold are numbers used in the reduced dataset. Numbers in the first column (N°) correspond to the nominal species count (XLSX 29 KB)
42991_2022_312_MOESM5_ESM.xlsx
Supplementary file5 Sequences used in phylogenetic analyses. Species name, group to which it belongs, and chromosomal data related to those sequences. The codes used in the ancestral state reconstructions of chromosome characters are indicated in square brackets (first the 2n and second the FNa). Green cells indicate sequences to which part of chromosomal variability of the species was added but which do not belong to that sequence (XLSX 39 KB)
42991_2022_312_MOESM6_ESM.xlsx
Supplementary file6 Uncorrected p-genetic distances of mitochondrial cytochrome b gene sequences of Ctenomys, and other octodontids obtained from GenBank. The distances involving the outgroups are indicated. The species groups are shown in boxes. Numbers in red indicate intraspecific distances. In yellow are marked low values of interspecific distances. In light blue are marked high values of intraspecific distances (XLSX 166 KB)
42991_2022_312_MOESM7_ESM.xls
Supplementary file7 Uncorrected p-genetic distances of mitochondrial cytochrome b gene of all available sequences of Ctenomys species. The curated dataset included 372 nucleotide sequences belonging to 49 Ctenomys species. (a) Intraspecific comparisons. (b) Interespecific comparisons. (c) Complete dataset (XLS 1792 KB)
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Buschiazzo, L.M., Caraballo, D.A., Labaroni, C.A. et al. Comprehensive cytogenetic analysis of the most chromosomally variable mammalian genus from South America: Ctenomys (Rodentia: Caviomorpha: Ctenomyidae). Mamm Biol 102, 1963–1979 (2022). https://doi.org/10.1007/s42991-022-00312-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42991-022-00312-9