Skip to main content

Advertisement

Log in

An evaluation of individual seasonal changes in dental macro- and mesowear of wild-caught common vole (Microtus arvalis sensu lato) by the intravital impressions method

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Evaluation of macro- and mesowear of the cheek teeth of Microtus voles as indicators of diet in paleoecological reconstructions are by now only at the level of pilot studies but already show promising results. Microtus voles exhibit food plasticity, and the structure of their molars determines a subtle response to changes in food composition. Dental remains of voles are abundant in Late Pleistocene and Holocene localities. However, before estimating fossil material, it is necessary to study the range of variation in extant samples. The aim of the current study is to evaluate whether or not seasonal variability of tooth wear is visible in the common vole M. arvalis from the Ural region (Russia). This is the first in vivo study of vole tooth wear using intravital impressions method. The process of individual macro- and mesowear of the first lower molar of wild-caught common voles has been investigated and quantified. The resulting data show a tendency of decreasing occlusal angle and increasing crown height from April to June/July. Moreover, the differentiation of wear of the dense and soft dentine of the occlusal surface of the enamel prisms decreased, and the depth of the relief increased. All these tendencies are obviously correlated with the change from less abrasive to more abrasive green feed components. From July to August, a reverse trend can be observed returning to a similar as during the spring months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data presented in this study are presented in Appendix II. The original specimens are curated and kept at the Laboratory of Paleoecology, Institute of Plant and Animal Ecology, Russian Academy of Sciences.

References

  • Abramson NI, Lissovskii AA (2012) Subfamily Arvicolinae. Mammals of Russia: systematic and geographical reference book (in Russian). Proc Zool Mus Moscow State Univ 52:127–141

    Google Scholar 

  • Ackermans NL (2020) The history of mesowear: a review. PeerJ 8:e8519

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackermans NL, Martin LF, Codron D, Hummel J, Kircher PR, Richter H, Kaiser TM, Clauss M, Hatt JM (2020) Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeogr Palaeocl Palaeoecol 553:109793

    Article  Google Scholar 

  • Andrews P (1990) Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset. University of Chicago Press, UK

    Google Scholar 

  • Batzli GO, Pitelka FA (1971) Condition and diet of cycling populations of the California vole, Microtus californicus. J Mammal 52:141–163

    Article  CAS  PubMed  Google Scholar 

  • Bernard N, Michelat D, Raoul F, Quéré JP, Delattre P, Giraudoux P (2010) Dietary response of Barn Owls (Tyto alba) to large variations in populations of common voles (Microtus arvalis) and European water voles (Arvicola terrestris). Can J Zool 88(4):416–426

    Article  Google Scholar 

  • Borodin AV (2009) Guide on teeth of voles of ural and western Siberia (late Pleistocene–today) (in Russian). Ural Branch of the Russian Academy of Sciences, Ekaterinburg

    Google Scholar 

  • Calandra I, Labonne G, Schulz-Kornas E, Kaiser TM, Montuire S (2016) Tooth wear as a means to quantify intra-specific variations in diet and chewing movements. Sci Rep 6:34037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheprakov MI (2010) Variability of the occlusal surface shape of molars in common lemmings (Lemmus) (in Russian). Sci Bull Yamalo-Nenets Indep Dist 1(64):75–82

    Google Scholar 

  • DeMiguel D, Azanza B, Morales J (2011) Paleoenvironments and paleoclimate of the Middle Miocene of central Spain: a reconstruction from dental wear of ruminants. Palaeogeogr Palaeocl Palaeoecol 302(3–4):452–463

    Article  Google Scholar 

  • Faith JT (2011) Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. Quatern Res 75:159–165

    Article  Google Scholar 

  • Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus 3301:1–36

    Article  Google Scholar 

  • Gileva EA, Bol’shakov VN, Polyavina OV, Cheprakov MI (2000) Microtus arvalis and M. rossiaemeridionalis in the Urals: hybridization in the wild. Dokl Biol Sci 370:134–137

    CAS  Google Scholar 

  • Green JL, Croft DA (2018) Using dental mesowear and microwear for dietary inference: a review of current techniques and applications: reconstructing Cenozoic terrestrial environments and ecological communities. In: Croft DA, Su D, Simpson SW (eds) Methods in paleoecology: reconstructing cenozoic terrestrial environments and ecological communities. Springer International Publishing, Cham, pp 53–73

    Chapter  Google Scholar 

  • Guérécheau A, Ledevin R, Henttonen H, Deffontaine V, Michaux JR, Chevret P, Renaud S (2010) Seasonal variation in molar outline of bank voles: an effect of wear? Mamm Biol 75:311–319

    Article  Google Scholar 

  • Hartley SE, De Gabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322

    Article  Google Scholar 

  • Heroldová M (1994) Diet of four rodent species from Robinia pseudo-acacia stands in South Moravia. Acta Theriol 39:333–337

    Article  Google Scholar 

  • Heroldová M, Janova E (2019) Feeding strategy of two rodent species in a set-aside field and its influence on alimentary tract morphometry. Mammalia 83:34–40

    Article  Google Scholar 

  • Hoffman JM, Fraser D, Clementz MT (2015) Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. J Exp Biol 218:1538–1547

    PubMed  Google Scholar 

  • Holišová V (1959) Potrava hrabose polniho. Hrabos polni (Microtus arvalis). Nčsav, Praha, pp 100–129

  • Horváth A, Bank L, Horváth GF (2020) Variation in the diet and breeding biology of the common barn-owl (Tyto alba) in a demographic cycle of common vole (Microtus arvalis) between two outbreaks. Ornis Hung 28:37–65

    Article  Google Scholar 

  • Hummel J, Findeisen E, Südekum K-H, Ruf I, Kaiser TM, Bucher M, Clauss M, Codron D (2011) Another one bites the dust: faecal silica levels in large herbivores correlate with high-crowned teeth. Proce Royal Soc B: Biol Sci 278(1712):1742–1747

    Article  Google Scholar 

  • Jacob J, Manson P, Barfknecht R, Fredricks T (2014) Common vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products. Pest Manag Sci 70:869–878

    Article  CAS  PubMed  Google Scholar 

  • Kaiser TM, Schulz E (2006) Tooth wear gradients in zebras as an environmental proxy—a pilot study. Mitt Hamburg Zool Museum Inst 103:187–210

    Google Scholar 

  • Kaiser TM, Müller DW, Fortelius M, Schulz E, Codron D, Clauss M (2013) Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Rev 43(1):34–46

    Article  Google Scholar 

  • Kropacheva JE, Smirnov NG, Markova EA (2012) Individual age and odontologic characteristics of root vole. Dokl Biol Sci 446:302–305

    Article  CAS  PubMed  Google Scholar 

  • Kropacheva YE, Sibiryakov PA, Smirnov NG, Zykov SV (2017) Variants of tooth mesowear in Microtus voles as indicators of food hardness and abrasiveness. Russ J Ecol 48:73–80

    Article  Google Scholar 

  • Kropacheva JE, Smirnov NG, Zykov SV (2021) Growth rate of cheek teeth in narrow-skulled vole (Lasiopodomys gregalis) depending on food abrasiveness. Russ J Ecol 52:430–438

    Article  Google Scholar 

  • Kubo MO, Yamada E (2014) The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS ONE 9:e90745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulikov PV, Zolotareva NV, Podgaevskaya EN (2013) Endemic plants of the Urals in the flora of the Sverdlovsk region. Goshchitsky, Yekaterinburg

    Google Scholar 

  • Lantová P, Lanta V (2009) Food selection in Microtus arvalis: the role of plant functional traits. Ecol Res 24:831–838

    Article  Google Scholar 

  • Lee WB, Houston DC (1993) The effect of diet quality on gut anatomy in British voles (Microtinae). J Comp Physiol B 163:337–339

    Article  CAS  PubMed  Google Scholar 

  • Leutert A (1983) Einfluß der Feldmaus, Microtus arvalis (Pall.), auf die floristische Zusammensetzung von Wiesen-Ökosystemen. Dissertation, ETH Zurich, Switzerland

  • Lewis PJ, Gutierrez MF, Johnson E (2000) Ondatra zibethicus (Arvicolinae, Rodentia) dental microwear patterns as a potential tool for palaeoenvironmental reconstruction. J Archaeol Sci 27:789–798

    Article  Google Scholar 

  • Lüthi M, Nentwig W, Airoldi JP (2010) Nutritional ecology of Microtus arvalis (Pallas, 1779) in sown wild flower fields and quasi-natural habitats. Rev Suisse Zool 117:811–828

    Google Scholar 

  • Malygin VM, Baskevich MI, Khlyap LA (2019) Invasion by sibling species of common vole (in Russian). Russ J Biol Invasions 12:71–93

    Google Scholar 

  • Markova AK, van Kolfschoten T, Bohncke Sh, Kosintsev PA, Mol I, Puzachenko AYu, Simakova AN, Smirnov NG, Verpoorte A, Golovachev IB (2008) Evolution of European ecosystems during the transition from the Pleistocene to the Holocene (24–8 thousand years ago) (in Russian). KMK Scientific Press, Moscow

    Google Scholar 

  • Markova EA, Smirnov NG, Kourova TP, Kropacheva YuE (2013) Ontogenetic variation in occlusal shape of evergrowing molars in voles: an intravital study in Microtus gregalis Pall. (Arvicolinae, Rodentia). Mamm Biol 78:251–257

    Article  Google Scholar 

  • Markova EA, Trofimova SS, Sibiryakov PA, Yalkovskaya LE (2020) Secondary types of food in the diet of a small-sized mammalian herbivore: from species ecology to habitat inferences. Mammal Research 65:289–300

    Article  Google Scholar 

  • Martin LF, Winkler D, Tütken T, Codron D, De Cuyper A, Hatt JM, Clauss M (2019) The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus). Proc R Soc B 286:20191921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LF, Krause L, Ulbricht A, Winkler DE, Codron D, Kaiser TM, Müller J, Hummer J, Clauss M, Hatt J-M, Schulz-Kornas E (2020) Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: a pilot investigation. Palaeogeogr Palaeocl Palaeoecol 556:109886

    Article  Google Scholar 

  • Martin LF, Ackermans NL, Tollefson TN, Kircher PR, Richter H, Hummel J, Cordon D, Hatt J-M, Clauss M (2021) Tooth wear, growth and height in rabbits (Oryctolagus cuniculus) fed pelleted or extruded diets with or without added abrasives. J Anim Physiol Anim Nutr. https://doi.org/10.1111/jpn.13565

    Article  Google Scholar 

  • Merceron G, Schulz E, Kordos L, Kaiser TM (2007) Paleoenvironment of Dryopithecus brancoi at Rudabánya, Hungary: evidence from dental meso- and micro-wear analyses of large vegetarian mammals. J Hum Evol 53(4):331–349

    Article  PubMed  Google Scholar 

  • Mihlbachler MC, Rivals F, Solounias N, Semprebon GM (2011) Dietary change and evolution of horses in North America. Science 331:1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Mokeeva TM, Chentsova NYu (1981) Ecological and physiological features of the sibling species of common vole—Microtus arvalis and Microtus subarvalis (Rodentia, Microtinae) (in Russian). Zoological J 60:752–763

    Google Scholar 

  • Müller J, Clauss M, Codron D, Schulz E, Hummel J, Fortelius M, Kircher P, Hatt JM (2014) Growth and wear of incisor and cheek teeth in domestic rabbits (Oryctolagus cuniculus) fed diets of different abrasiveness. J Exp Zool A Ecol Genet Physiol 321:283–298

    Article  PubMed  Google Scholar 

  • Müller J, Clauss M, Codron D, Schulz E, Hummel J, Kircher P, Hatt JM (2015) Tooth length and incisal wear and growth in guinea pigs (Cavia porcellus) fed diets of different abrasiveness. J Anim Physiol Anim Nutr 99:591–604

    Article  Google Scholar 

  • Nelson SV, Badgley C, Zakem EJ (2005) Microwear in modern squirrels in relation to diet. Palaeontol Electron 8:401

    Google Scholar 

  • Okulova NM, Mironova TA, Sapel’nikov SF, Nikonova OA, Abaturov BD, Baskevich MI (2015) Autumn diets of sibling species Microtus arvalis sensu lato and M. agrestis (Rodentia, Arvicolinae) in the forest-steppe of the central chernozem zone. Russ J Ecol 46:181–188

    Article  Google Scholar 

  • Olenev GV (1980) Intravital determination of the species of murine rodents by imprints of teeth (in Russian). Zoological J 59:294–295

    Google Scholar 

  • Olenev GV (2002) Alternative types of ontogeny in cyclomorphic rodents and their role in population dynamics: an ecological analysis. Russ J Ecol 33:321–330

    Article  Google Scholar 

  • Penteriani V, del Mar Delgado M (2019) The eagle owl. Bloomsbury Publishing, London

    Google Scholar 

  • Percher AM, Merceron G, Nsi Akoue G, Galbany J, Romero A, Charpentier MJ (2018) Dental microwear textural analysis as an analytical tool to depict individual traits and reconstruct the diet of a primate. Am J Phys Anthropol 165(1):123–138

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Carranza J, Sánchez-Prieto C (2015) Wear fast, die young: more worn teeth and shorter lives in Iberian compared to Scottish red deer. PLoS ONE 10(8):e0134788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rinke T (1990) Zur nahrungsökologie von Microtus arvalis (Pallas, 1779) auf dauergrünland: I. Allgemeine nahrungspräferenzen. Z Säugetierk 55:106–114

    Google Scholar 

  • Rivals F, Rabinovich R, Khalaily H, Valla F, Bridault A (2020) Seasonality of the Final Natufian occupation at Eynan/Ain Mallaha (Israel): an approach combining dental ageing, mesowear and microwear. Archaeol Anthropol Sci 12(10):1–15

    Article  Google Scholar 

  • Schulz E, Kaiser TM (2013) Historical distribution, habitat requirements and feeding ecology of the genus Equus (Perissodactyla). Mammal Rev 43(2):111–123

    Article  Google Scholar 

  • Schulz-Kornas E, Kaiser TM, Calandra I, Winkler DE (2020) A brief history of quantitative wear analyses with an appeal for a holistic view on dental wear processes. In: Martin T, Koenigswald WV (eds) Mammalian teeth—form and function. Verlag Dr Friedrich Pfeil, Munich, pp 44–53

    Google Scholar 

  • Semprebon GM, Rivals F (2010) Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeogr Palaeocl Palaeoecol 295:131–145

    Article  Google Scholar 

  • Sibiryakov PA (2013) Indirect methods for reconstructing the trophic spectrum of green-eating rodents using the example of common vole (Microtus arvalis obscurus, Pall., 1778) (in Russian). Materials of the conf. Young scientists. Ecol: Theory Pract, April 15-19, 2013 – Yekaterinburg, pp 96–101

  • Smirnov NG, Kropacheva JE (2015) Patterns of lateral wear facets on molar teeth of voles (Arvicolinae). Dokl Biol Sci 460:20–22

    Article  CAS  PubMed  Google Scholar 

  • Suchomel J, Šipoš J, Čepelka L, Heroldová M (2019) Impact of Microtus arvalis and Lepus europaeus on apple trees by trunk bark gnawing. Plant Prot Sci 55:142–147

    Article  Google Scholar 

  • Taylor LA, Müller DW, Schwitzer C, Kaiser TM, Codron D, Schulz E, Clauss M (2014) Tooth wear in captive rhinoceroses (Diceros, Rhinoceros, Ceratotherium: Perissodactyla) differs from that of free-ranging conspecifics. Contrib Zool 83(2):107–117

    Article  Google Scholar 

  • Teaford MF, Oyen OJ (1989) In vivo and in vitro turnover in dental microwear. Am J Phys Anthropol 80:447–460

    Article  CAS  PubMed  Google Scholar 

  • Teaford MF, Robinson JG (1989) Seasonal or ecological differences in diet and molar microwear in Cebus nigrivittatus. Am J Phys Anthropol 80:391–401

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht A, Maul LC, Schulz E (2015) Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm Biol 80:14–20

    Article  Google Scholar 

  • Ungar PS (1996) Dental microwear of European Miocene catarrhines: evidence for diets and tooth use. J Hum Evol 31:335–366. https://doi.org/10.1006/jhev.1996.0065

    Article  Google Scholar 

  • Ungar PS, Sokolova NA, Purifoy J, Fufachev IA, Sokolov AA (2021a) Assessing molar wear in narrow-headed voles as a proxy for diet and habitat in a changing Arctic. Mamm Biol 101:137–151

    Article  Google Scholar 

  • Ungar PS, Saylor L, Sokolov AA, Sokolova NA, Gilg O, Montuire S, Royer A (2021b) Incisor microwear of Arctic rodents as a proxy for microhabitat preference. Mamm Biol 101:1033–1052

    Article  Google Scholar 

  • van der Meulen AJ (1973) Middle Pleistocene smaller mammals from the Monte Pegalia (Orvieto, Italy) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia). Quaternaria 17:1–144

    Google Scholar 

  • Winkler DE, Tütken T, Schulz-Kornas E, Kaiser TM, Müller J, Leichliter J, Weber K, Yatt J-M, Clauss M (2020) Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs. Proc Natl Acad Sci 117:22264–22273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu O, Vergne Y, Gounot M (1980) Modèle d’interaction entre campagnols Microtus arvalis et prairie permanente. Revue d’Écologie. http://hdl.handle.net/2042/55008

  • Zykov SV, Kropacheva YE, Smirnov NG, Dimitrova YV (2018) Molar microwear of narrow-headed vole (Microtus gregalis Pall., 1779) depending on the feed abrasiveness. Dokl Biol Sci 478:16–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their thorough work and useful comments on the manuscript. We are grateful to Dr. N.G. Smirnov for comprehensive assistance at all stages of work.

Funding

This research was performed under the state assignment of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya E. Kropacheva.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interests.

Ethics approval

Approval was obtained from the ethics committee Institute of Plant and Animal Ecology, Russian Academy of Sciences. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Gertrud Rößner.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropacheva, Y.E., Zykov, S.V. An evaluation of individual seasonal changes in dental macro- and mesowear of wild-caught common vole (Microtus arvalis sensu lato) by the intravital impressions method. Mamm Biol 102, 501–516 (2022). https://doi.org/10.1007/s42991-022-00252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-022-00252-4

Keywords

Navigation