Abstract
Understanding population structure and spatial distribution of genetic diversity is an important aspect of developing appropriate management plans for wildlife conservation, especially for large carnivores like the puma (Puma concolor). Human persecution and habitat degradation represent the main threats to the species’ conservation in Argentina, where its population genetics has been only marginally explored, and conflict with livestock is mainly managed by legally harvesting pumas. Combining microsatellite genotyping and mitochondrial DNA sequencing, we investigated patterns of puma population diversity and genetic structure in an area of northern Patagonia heavily disturbed by anthropogenic activities. Moreover, we explored effective population size and functional connectivity to assess if recent habitat modifications might have influenced puma genetics. Our results suggest the presence of two genetic clusters (based on microsatellites) and two different haplotypes, which exhibited a similar geographic separation. Despite the observed pattern of a decrease in genetic association among individuals with increasing geographic distance, we found asymmetric gene flow and non-homogeneously distributed diversity among populations, which could be explained by the effect of human disturbance on puma dispersal capacity. The low-density estimate and the sign of a recent significant bottleneck reinforce our inference. This research contributes to the basic knowledge of puma genetics required for planning conservation strategies that aim to ensure species persistence in northern Patagonia.
Similar content being viewed by others
References
Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42
Anderson CR, Lindzey G, Mcdonald DB (2004) Genetic structure of cougar populations across the Wyoming basin: metapopulation or megapopulation. J Mammal 85:1207–1214. https://doi.org/10.1644/BEL-111.1
Balkenhol N et al (2014) A multi-method approach for analyzing hierarchical genetic structures: a case study with cougars Puma concolor. Ecography 37:552–563. https://doi.org/10.1111/j.1600-0587.2013.00462.x
Bandelt H-J, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Beier P (1995) Dispersal of cougars in fragmented habitat. J Wildl Manage 59:228–237. https://doi.org/10.2307/3808935
Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2002) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12:456–463. https://doi.org/10.1111/j.1755-0998.2011.03104.x
Caragiulo A, Dias-Freedman I, Clark J, Rabinowitz S, Amato G (2014) Mitochondrial DNA sequence variation and phylogeography of Neotropic pumas (Puma concolor). Mitochondrial DNA 25:304–312. https://doi.org/10.3109/19401736.2013.800486
Castilho CS, Marins-Sa LG, Benedet RC, Freitas TO (2011) Landscape genetics of mountain lions (Puma concolor) in southern Brazil. Mamm Biol 76:476–483. https://doi.org/10.1016/j.mambio.2010.08.002
Castilho CS, Marins-Sá LG, Benedet RC, Freitas TO (2012) Genetic structure and conservation of Mountain Lions in the south-Brazilian Atlantic rain forest. Genet Mol Biol 35:67–73. https://doi.org/10.1590/S1415-47572011005000062
Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014
Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197. https://doi.org/10.1093/jhered/91.3.186
Culver M, Hedrick PW, Murphy K, O’Brien S, Hornocker MG (2008) Estimation of the bottleneck size in Florida panthers. Anim Conserv 11:104–110. https://doi.org/10.1111/j.1469-1795.2007.00154.x
Dabney J et al (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci USA 110:15758–15763. https://doi.org/10.1073/pnas.1314445110
De Angelo C et al (2019) Puma concolor. In: SAyDS–SAREM (eds) Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. http://cma.sarem.org.ar. Accessed 10 Jul 2021
De Angelo C, Paviolo A, Di Bitetti M (2011) Differential impact of landscape transformation on pumas (Puma concolor) and Jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Divers Distrib 17:422–436. https://doi.org/10.1111/j.1472-4642.2011.00746.x
Del Valle HF, Elissalde NO, Gagliardini DA, Milovich J (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Soil Res Rehabil 12(2):95–121. https://doi.org/10.1080/15324989809381502
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 9:11–15
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7
Elbroch LM, Wittmer HU, Saucedo C, Corti P (2009) Long-distance dispersal of a male puma (Puma concolor) in Patagonia. Rev Chil Hist Nat 82:459–461
Ernest HB, Boyce WM, Bleich VC, May BP, Stiver SJ, Torres SG (2003) Genetic structure of mountain lion (Puma concolor) populations in California. Conserv Genet 4:353–366. https://doi.org/10.1023/A:1024069014911
Ernest HB, Vickers TW, Morrison SA, Buchalski MR, Boyce WM (2014) Fractured genetic connectivity threatens a southern California puma (Puma concolor) population. PLoS ONE 9:e107985. https://doi.org/10.1371/journal.pone.0107985
Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genetic Res Camb 66:95–107. https://doi.org/10.1017/S0016672300034455
Frankham R, Balloux JD, Briscoe D (2005) Introduction to conservation genetics. Cambridge University Press, Cambridge
Gallo O, Castillo DF, Godinho R, Casanave EB (2020) Genetic diversity, population structure, and immigration, in a partially hunted puma population of south-central Argentina. J Mammal 101:766–778. https://doi.org/10.1093/jmammal/gyaa039
Golluscio RA, Deregibus VA, Paruelo JM (1998) Sustainability and range management in the Patagonia steppes. Ecol Austral 8:265–284
Guerisoli MM, Luengos Vidal E, Franchini M, Caruso N, Casanave EB, Lucherini M (2017) Characterization of puma–livestock conflicts in rangelands of central Argentina. R Soc O Sci 4:170–852. https://doi.org/10.1098/rsos.170852
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372. https://doi.org/10.2307/2532296
Hall A (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Hawley JE et al (2016) Long-distance dispersal of a subadult male cougar from South Dakota to Connecticut documented with DNA evidence. J Mammal 97:1435–1440. https://doi.org/10.1093/jmammal/gyw088
Heurich M et al (2018) Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol Conserv 224:355–365. https://doi.org/10.1016/j.biocon.2018.05.011
Holbrook JD et al (2012) Genetic diversity, population structure, and movements of mountain lions (Puma concolor) in Texas. J Mammal 93:989–1000. https://doi.org/10.1644/11-MAMM-A-326.2
Johnson WE et al (2010) Genetic restoration of the Florida panther. Science 329:1641–1645. https://doi.org/10.1126/science.1192891
Kurushima JD, Collins JW, Ernest B (2006) Development of 21 microsatellite loci for puma (Puma concolor) ecology and forensics. Mol Ecol Notes 6:1260–1262. https://doi.org/10.1111/j.1471-8286.2006.01508.x
LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol Modell 212:372–381. https://doi.org/10.1016/j.ecolmodel.2007.10.036
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:110–116. https://doi.org/10.1111/2041-210X.12410
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinform 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187
Llanos R, Travaini A, Montanelli S, Crespo E (2014) Estructura de edades de pumas (Puma concolor) cazados bajo el sistema de remoción por recompensas en Patagonia. ¿Selectividad u oportunismo en la captura? Ecol Austral 24:311–319
Loxtermann JL (2011) Fine scale population structure of pumas in the Intermountain West. Conserv Genet 12:1049–1059. https://doi.org/10.1007/s10592-011-0208-y
Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. https://doi.org/10.1093/jhered/89.3.238
Matte EM, Castilho CS, Miotto RA, Sana DA, Johnson WE, O’Brien SJ, de Freitas TR, Eizirik E (2013) Molecular evidence for a recent demographic expansion in the puma (Puma concolor) (Mammalia, Felidae). Genet Mol Biol 36(4):586–597. https://doi.org/10.1590/S1415-47572013000400018
Mazzoni E, Vazquez M (2009) Desertification in Patagonia. Dev Earth Surf Process 13:351–377. https://doi.org/10.1016/S0928-2025(08)10017-7
McRae BH, Beier P, Dewald LE, Huynh Y, Keim P (2005) Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Mol Ecol 14:1965–1977. https://doi.org/10.1111/j.1365-294x.2005.02571.x
Migueles N et al. (2019) Informe del estado ambiental del Río Negro. https://www.unrn.edu.ar/archivos/noticia/1159/Informe%20rio%20Negro%20UNRN%20V%20web.pdf. Accessed 4 Jan 2021
Miotto RA, Rodrigues FP, Ciocheti G, Galetti PM (2007) Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected Cerrado areas in the Brazilian Southeast. Biotropica 39:647–654. https://doi.org/10.1111/j.1744-7429.2007.00315.x
Miotto RA, Cervini M, Figueiredo MG, Begotti RA, Galetti PM Jr (2011) Genetic diversity and population structure of pumas (Puma concolor) in southeastern Brazil: implications for conservation in a human-dominated landscape. Conserv Genet 12:1447–1455. https://doi.org/10.1007/s10592-011-0243-8
Nei M (1978) Estimation of average heterozygosity and genetic distance for small number of individuals. Genetics 89:583–590
Newby JR et al (2013) Human-caused mortality influences spatial population dynamics: pumas in landscapes with varying mortality risks. Biol Conserv 159:230–239. https://doi.org/10.1016/j.biocon.2012.10.018
Nielsen C, Thompson D, Kelly M, Lopez-Gonzalez CA (2015) Puma concolor (errata version published in 2016). The IUCN Red List of Threatened Species 2015: e.T18868A97216466. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T18868A50663436.en
Novaro AJ, Funes MC, Walker RS (2005) An empirical test of source-sink dynamics induced by hunting. J Appl Ecol 42:910–920. https://doi.org/10.1111/j.1365-2664.2005.01067.x
Oliva G, Paredes P, Ferrante D, Cepeda C, Rabinovich J (2019) Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia. J Appl Ecol 56:1575–1584. https://doi.org/10.1111/1365-2664.13408
Oyarzabal M et al (2018) Unidades de vegetación de la Argentina. Ecol Austral 28:40–63. https://doi.org/10.25260/EA.18.28.1.0.399
Paviolo A, Di Blanco YE, De Angelo CD, Di Bitetti M (2009) Protection affects the abundance and activity patterns of pumas in the Atlantic Forest. J Mammal 90:926–934. https://doi.org/10.1644/08-MAMM-A-128.1
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Peri PL, Lencinas MV, Bousson J, Lasagno R, Soler R, Bahamonde H, Martínez Pastur G (2016) Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: the case of PEBANPA network. J Nat Conserv 34:51–64. https://doi.org/10.1016/j.jnc.2016.09.003
Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:846–847. https://doi.org/10.1038/nrg1707
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Rambaut A, Drummond AJ (2005) Tracer. MCMC trace analysis tool. Version 1.5. Latest released version 1.7.1. https://beast.community/tracer. Accessed 27 Mar 2020
Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
Riley SPD, Serieys LEK, Pollinger J, Sikich J, Dalbeck L, Waine RK, Ernest HB (2014) Individual behaviours dominate the dynamics of an urban mountain lion population isolated by roads. Curr Biol 24:1989–1994. https://doi.org/10.1016/j.cub.2014.07.029
Ripple WJ et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:151–164. https://doi.org/10.1126/science.1241484
Robinson HS, Wielgus RB, Cooley HS, Cooley SW (2008) Sink populations in large carnivore management: cougar demography and immigration in a hunted population. Ecol Appl 8(4):1028–1037. https://doi.org/10.1890/07-0352.1
Rodzen JA, Banks JD, Meredith EP, Jones KC (2007) Characterization of 37 microsatellite loci in mountain lions (Puma concolor) for use in forensic and population applications. Conserv Genet 8:1239–1241. https://doi.org/10.1007/s10592-006-9237-3
Ruiz-Garcia M (2001) Diversidad genética como herramienta de zonificación ambiental: estudios moleculares (microsatélites) en el caso de primates y félidos neotropicales comportan una nueva perspectiva. In: Defle TR, Palacios PA (eds) Zonificación ambiental para el ordenamiento territorial en la Amazonia Colombiana. Universidad Nacional de Colombia, Instituto Amazónico de Investigaciones, Bogota, pp 84–110
Sinclair EA, Swenson EL, Wolfe ML, Choate D, Wolf M, Crandall KA (2001) Gene flow estimates in Utah’s cougars imply management beyond Utah. Anim Conserv 4:257–264. https://doi.org/10.1017/S1367943001001305
Sweanor LL, Logan KA, Hornocker MG (2000) Cougar dispersal patterns, meta-population dynamics and conservation. Conserv Biol 14:798–808. https://doi.org/10.1046/j.1523-1739.2000.99079.x
Taberlet P et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194. https://doi.org/10.1093/nar/24.16.3189
Teichman KJ, Cristescu B, Darimont CT (2016) Hunting as a management tool? Cougar-human conflict is positively related to trophy hunting. BMC Ecol 16:44. https://doi.org/10.1186/s12898-016-0098-4
Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499. https://doi.org/10.1111/j.1523-1739.2003.00059.x
Trigo TC et al (2008) Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol Ecol 17:4317–4333. https://doi.org/10.1111/j.1365-294X.2008.03919.x
Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2
Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. https://doi.org/10.1007/s10592-005-9100-y
Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. https://doi.org/10.1111/j.1755-0998.2007.02061.x
Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191
Wisely SM, Maldonado JE, Fleischer RC (2004) A technique for sampling ancient DNA that minimizes damage to museum specimens. Conserv Genet 5:105–107
Acknowledgements
The Secretaría de Medio Ambiente y Desarrollo Sustentable of Río Negro province provided the samples and gave the permit for use of the biological material. The Dirección de Fauna y Flora Silvestre national office provided the documentation for sample exportation. We thank the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” for the material provided. We are thankful to P. Ribeiro, D. Castro, and S. Lopes for lab assistance. This work was funded by: Wild Felid Association (Legacy Scholarship, 2016), Conservation, Research and Education Opportunities International (2014), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2283/2015), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; PIP11220130100060CO01), Segretaría General de Ciencias y Tecnología-Universidad Nacional del Sur (PGI24/B234), Research Centre in Biodiversity and Genetic Resources (CIBIO/InBIO) through private funds and Sociedad Argentina para el Estudio de los Mamíferos (SAREM) (2018). O. Gallo, D.F. Castillo, M. Mac Allister and E.B. Casanave were funded by Argentinian national funds through CONICET; G.P. Fernández was funded by Universidad Nacional del Noroeste de la Provincia de Buenos Aires, and R. Godinho was funded by Portuguese national funds through the Foundation for Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all the authors, the corresponding author states that there is no conflict of interest.
Additional information
Handling editor: J. Paul Grobler.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gallo, O., Castillo, D.F., Godinho, R. et al. Molecular data reveal a structured puma (Puma concolor) population in northern Patagonia, Argentina. Mamm Biol 101, 653–663 (2021). https://doi.org/10.1007/s42991-021-00160-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42991-021-00160-z