Skip to main content

Advertisement

Log in

Dynamics of threatened mammalian distribution in Iran’s protected areas under climate change

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Iran has a diverse range of mammals. Climate change can alter the species' range, leading to expansion or contraction and affect the IUCN threatened species' distribution. We assessed the effects of climate change on the climatic niche and coverage of the protected areas for 16 threatened mammal species in Iran. The species’ presence-only occurrence records, four predictor variables, two future climate scenarios (Representative Concentration Pathways 2.6 and 8.5) and two time steps (current and 2070) were used to build species distribution models by applying the ensemble approach in BIOMOD2. Species' responses to climate change under current condition showed different results: 8 of the 16 species are likely to gain climatically suitable space, but six species will probably lose climate range by 2070. Persian fallow deer and marbled polecat respond positively to the RCP 2.6 but will experience a range reduction in the RCP 8.5. Coverage of the protected area network will increase in both scenarios for six mammals. The coverage will maximize in RCP 2.6 for four species and decrease RCP 8.5 for another four species and vice versa. According to our model, the coverage will decrease for two species in both future scenarios. The overlap of the protected areas with the distribution pattern showed that in the next 50 years, climate change will negatively affect 60% of Iranian threatened mammals. The species’ current and future distribution range and the designated refugia for climate change can be considered protected areas for conservation plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • AbiSaid M, Dloniak SMD (2015) Hyaena hyaena. The IUCN Red List of Threatened Species 2015: e.T10274A45195080. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T10274A45195080.en. Downloaded on 06 March 2021

  • Abramov AV, Kranz A, Maran T (2016) Vormela peregusna. The IUCN Red List of Threatened Species 2016: e. T29680A45203971

  • Adams RA (2010) Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91:2437–2445

    PubMed  Google Scholar 

  • Ahmadzadeh F, Liaghati H, Hassanzadeh Kiabi B, Mehrabian A, Abdoli A, Mostafavi H (2008) The status and conservation of the Asiatic black bear in Nikshahr County, Baluchistan District of Iran. J Nat Hist 42(35):2379–2387

    Google Scholar 

  • Akay AE, Inac S, Yildrim IC (2011) Monitoring the local distribution of striped hyenas (Hyaena hyaena L.) in the Eastern Mediterranean Region of Turkey (Hatay) by using GIS and remote sensing technologies. Environ Monit Assess 181:445–455

    PubMed  Google Scholar 

  • Alam MS (2011) Status ecology and conservation of striped hyena (Hyaena hyaena) in Gir National Park and Sanctuary, Gujarat. PhD Thesis, Aligarh Muslim University, Aligarh, India

  • Alcaldé J, Benda P, Juste J (2016) Rhinolophus mehelyi. The IUCN Red List of Threatened Species 2016: e. T19519A21974380. Downloaded on 23 January 2021

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Google Scholar 

  • Athreya V, Odden M, Linnell JD, Karanth KU (2011) Translocation as a tool for mitigating conflict with leopards in human dominated landscapes of India. Conserv Biol 25(1):133–141

    PubMed  Google Scholar 

  • Avalos V (2015) Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Global Ecol Conserv 4:459–469

    Google Scholar 

  • Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Chang 1:313–318

    Google Scholar 

  • Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35(3):250–258

    Google Scholar 

  • Beier P (2012) Conceptualizing and designing corridors for climate change. Ecol Restor 30:312–319

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of Climate Change on the Future of Biodiversity. Ecol Lett 15

  • Bencharif S-T (2010) Climate Change and connectivity: Are corridors the solution? Queen’s University Kingston, Ontario, Canada

    Google Scholar 

  • Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151

    PubMed  Google Scholar 

  • Bleyhl B, Arakelyan M, Askerov E, Bluhm H, Gavashelishvili A, Ghasabyan M, Ghoddousi A, Heidelberg A, Khorozyan I, Malkhasyan A, Manvelyan K, Masoud M, Moqanaki E, Radeloff VC, Soofi M, Weinberg P, Zazanashvili N, Kuemmerle T (2019) Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Divers Distrib 25:129–141

    Google Scholar 

  • Bond N, Thomson J, Reich P, Stein J (2011) Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Mar Freshw Res 62:1043–1061

    Google Scholar 

  • Boone RB, Krohn WB (2002) Modeling tools and accuracy assessment. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, pp 265–270

    Google Scholar 

  • Burns CE, Johnston KM, Schmitz OJ (2003) Global climate change and mammalian species diversity in US national parks. Proc Natl Acad Sci 100:11474–11477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cammell ME, Knight JD (1992) Effects of climate change on the population dynamic of crop pests. Adv Ecol Res 22:117–162

    Google Scholar 

  • Cianfrani C, Broennimann AL, Guisan., (2018) More than range exposure: Global otter vulnerability to climate change. Biol Cons 221:103–113

    Google Scholar 

  • CITES (2021) Convention on international trade in endangered species of wild Fauna and Flora. https://www.cites.org. Accessed 1 June 2021

  • Daneshvar MRM, Ebrahimi M, Nejadsoleymani H (2019) An overview of climate change in Iran: facts and statistics. Environmental Systems Research 8:7

    Google Scholar 

  • Datta A, Anand MO, Naniwadekar R (2008) Empty forests: large carnivore and prey abundance in Namdapha National Park, north-east India. Biol Conserv 141(5):1429–1435

    Google Scholar 

  • Davis AJ, Hawton JH, Shorrocks B, Jenkinson LS (1998a) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67(4):600–612

    Google Scholar 

  • Davis AJ, Jenkinson LS, Hawton JH, Shorrocks B, Wood S (1998b) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    CAS  PubMed  Google Scholar 

  • Di Minin E, Slotow R, Hunter LT, Pouzols FM, Toivonen T, Verburg PH, Leader-Williams N, Petracca L, Moilanen A (2016) Global priorities for national carnivore conservation under land use change. Sci Rep 6:1–9

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Google Scholar 

  • Ebrahimi A, Sardari P, Safavian S, Jafarzade Z, Bashghareh S, Khavari Z (2019) Climate change effects on species of Bovidae family in Iran. Environm Earth Sci 78:186

    Google Scholar 

  • Elasha BO (2010) Mapping of climate change threats and human development impacts in the Arab region. UNDP Arab Development Report–Research Paper Series, UNDP Regiona Bureau for the Arab States

  • Elliot KM (1983) The otter (Lutra lutra) in Spain. Mammal Rev 13:25–34

    Google Scholar 

  • Evans JP (2009) 21st century climate change in the Middle East. Clim Change 92:417–432

    Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1989) The effects of enriched carbon dioxide atmospheres on plant—insect herbivore interactions. Science 243(4895):1198–1200

    CAS  PubMed  Google Scholar 

  • Farashi A, Erfani M (2018) Modeling of habitat suitability of Asiatic black bear (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecol Sin 38(1):9–14

    Google Scholar 

  • Farhadinia MS, Moqanaki EM, Hosseini-Zavarei F (2014) Predator– prey relationships in a middle Asian Montane steppe: Persian leopard versus urial wild sheep in Northeastern Iran. Eur J Wildl Res 60(2):341–349

    Google Scholar 

  • Farhadinia MS, Hunter LTB, Jourabchian A, Hosseini-Zavarei F, Akbari H, Ziaei H, Schaller GB, Jowkar H (2017) The critically endangered Asiatic cheetah Acinonyx jubatus venaticus in Iran: a review of recent distribution, and conservation status. Biodivers Conserv 26:1027–1046

    Google Scholar 

  • Fertig W, Reiners WA (2002) Predicting presence/absence of plant species for range mapping: a case study from Wyoming. Predicting species occurrences: issues of accuracy and scale, pp 483–489

  • Fitter A, Fitter R (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    CAS  PubMed  Google Scholar 

  • Freedman B (1989) Environmental ecology: the impacts of pollution and other stresses on ecosystem structure and function. Academic Press, San Diego, p 424

    Google Scholar 

  • Ghoddousi A, Hamidi AKh, Soofi M, Khorozyan I, Kiabi BH, Waltert M (2016) Effects of ranger stations on predator and prey distribution and abundance in an Iranian steppe landscape. Anim Conserv 19(3):273–280

    Google Scholar 

  • Hannah L (2014) Climate Change Biology. 2 editions, London: Academic

  • Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25:839–852

    Google Scholar 

  • Hemami M, Momemi M (2013) Estimating abundance of the Endangered onager Equus Hemionus onager in Qatruiyeh National Park. Iran Oryx 47(2):266–272

    Google Scholar 

  • Hemami M, Kaczensky P, Lkhagvasuren B, Pereladova O, Bouskila A (2015) Equus hemionus ssp. onager. The IUCN Red List of Threatened Species 2015: e.T7966A3144941

  • Hill J, Thomas C, Fox R, Telfer M, Willis S, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges . Proc Royal Soc London Series B Biolog Sci 269:2163–2171

    CAS  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152

    Google Scholar 

  • Hobday A, Okey T, Poloczanska E, Kunz T, Richardson A (2006) Impacts of climate changeon Australian marine Life-Part B: Technical Report

  • Hof AR, Jansson R, Nilsson C (2012) Future climate change will favour non-specialist mammals in the (sub) arctics. PLoS One 7

  • IUCN (2020) The IUCN Red List of threatened species. Version 2020–3. http://www.iucnredlist.org. Downloaded on 21 January 2021

  • IUCN SSC Antelope Specialist Group (2017) Gazella subgutturosa. The IUCN Red List of Threatened Species 2017: e.T8976A50187422. Downloaded on 06 March 2021

  • Jacobson AP, Gerngross P, Lemeris J, Schoonover RF, Anco C, Breitenmoser-Wursten C, Laguardia A (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4:e1974

    PubMed  PubMed Central  Google Scholar 

  • Jones G, Rebelo H (2013) Responses of bats to climate change: learning from the past and predicting the future. In Bat evolution, ecology, and conservation (pp. 457–478). Springer, New York

  • Jowkar H, Hunter L, Ziaie H, Marker L, Breitenmoser-Wursten C, Durant S (2008) Acinonyx jubatus ssp. venaticus. The IUCN Red List of Threatened Species 2008: e.T220A13035342. Downloaded on 06 March 2021

  • Juste J, Alcaldé J (2016) Rhinolophus euryale. The IUCN Red List of Threatened Species 2016: e.T19516A21971185. Downloaded on 23 January 2021

  • Karami M, Ghadierian T, Faizolahi K (2016) The atlas of mammals of Iran. Iran Department of Environment Press. 240p (in Persian)

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4(1):1–20

    Google Scholar 

  • Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A, De Ruiter PC (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217

    PubMed  Google Scholar 

  • Khorozyan I, Malkhasyan A, Murtskhvaladze M (2011) The striped hyaena Hyaena hyaena (Hyaenidae, Carnivora) rediscovered in Armenia. Folia Zool 60:253–261

    Google Scholar 

  • Khosravi R, Hemami M, Malekian M, Flint AL, Flint LE (2016) Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model. Turkish J Zool 40:574–585

    CAS  Google Scholar 

  • Koo KS, Park D, Oh HS (2019) Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J Asia-Pacific Biodivers 12:1–6

    Google Scholar 

  • Kryštufek B, Yigit N, Amori G (2008) Mesocricetus brandti. The IUCN red list of threatened species 2008: e. T13220A3421550

  • Kryštufek B, Vohralik V, Obuch J (2009) Endemism, vulnerability and conservation issues for small terrestrial mammals from the Balkans and Anatolia. Foolia Zoologica

  • La Sorte FA, Jetz W (2012) Tracking of climatic niche boundaries under recent climate change. J Anim Ecol 81:914–925

    PubMed  Google Scholar 

  • Lemes P, Melo AS, Loyola RD (2013) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368

    Google Scholar 

  • Levinsky I, Skov F, Svenning J-C, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816

    Google Scholar 

  • Lovejoy TE (2006) Protected areas: a prism for a changing world. Trends Ecol Evol 21:329–333

    PubMed  Google Scholar 

  • Lucas R, Lule AV, Rodríguez MT, Kamal M, Thomas N, Asbridge E, Kuenzer C (2017) Spatial ecology of mangrove forests: A remote sensing perspective. In Mangrove ecosystems: a global biogeographic perspective (pp. 87–112). Springer, Cham

  • MacDonald SM, Mason CF (1983) Some factors influencing the distribution of otters (Lutra lutra). Mammal Rev 13:1–10

    Google Scholar 

  • Mace GM et al (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442

    PubMed  Google Scholar 

  • Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Cons 187:103–111

    Google Scholar 

  • McCain CM, King SRB (2014) Body size and activity times mediate mammalian responses to climate change. Glob Change Biol 20(6):1760–1769

    Google Scholar 

  • McKelvey KS, Perry RW, Mills LS (2013) the effects of climate change on mammals. US Department of Agriculture, Forest Service, Climate Change Resource Center

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Thomson AGJMV (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1–2):213

    CAS  Google Scholar 

  • Michel S, Ghoddousi A (2020) Ovis vignei. The IUCN red list of threatened species 2020: e. T54940655A54940728

  • Moqanaki EM, Cushman SA (2016) All roads lead to Iran: predicting landscape connectivity of the last stronghold for the critically endangered Asiatic cheetah. Anim Conserv. https://doi.org/10.1111/acv.12281

    Article  Google Scholar 

  • Morovati M, Karami M, Kaboli M (2014) Desirable areas and effective environmental factors of wild goat habitat (Capra aegagrus). Int J Environm Res 8(4):1031–1040

    Google Scholar 

  • Morueta-Holme N, Fløjgaard C, Svenning J.-C (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One 5

  • NCCOI (2014) Third national communication to UNFCCC. National Climate Change Office of Iran

  • Nepstad D, Schwartzman S, Bamberger B, Santilli M, Ray D, Schlesinger P, Lefebvre P, Alencar A, Prinz E, Fiske G, Rolla A (2006) Inhibition of Amazon deforestation and fre by parks and indigenous lands. Conserv Biol J Soc Conserv Biol 20:65–73

    CAS  Google Scholar 

  • Newson SE, Mendes S, Crick HQ, Dulvy NK, Houghton JD, Hays GC, Hutson AM, MacLeod CD, Pierce GJ, Robinson RA (2009) Indicators of the impact of climate change on migratory species. Endang Spec Res 7:101–113

    Google Scholar 

  • Nunez S, Arets E, Alkemade R, Verwer C, Leemans R (2019) Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Clim Change 154:351–365

    Google Scholar 

  • Pacifici M, Visconti P, Butchart SH, Watson JE, Cassola FM, Rondinini C (2017) Species’ traits influenced their response to recent climate change. Nat Clim Chang 7:205–208

    Google Scholar 

  • Packer C, Brink H, Kissui BM, Maliti H, Kushnir H, Caro T (2011) Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv Biol 25(1):142–153

    CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  PubMed  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    CAS  Google Scholar 

  • Paunović M (2016) Myotis capaccinii. The IUCN red list of threatened species 2016: e.T14126A22054131. Downloaded on 23 January 2021

  • Pavlović L, Stojanović DB, Kresoja M, Stjepanović S, Orlović S, Bojović M (2017) Development of a species distribution model using machine learning methods. Topola, 167–175

  • Porfirio LL, Harris RM, Lefroy EC, Hugh S, Gould SF, Lee G, Bindoff NL, Mackey B (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9:e113749

    PubMed  PubMed Central  Google Scholar 

  • Pressey RL, Visconti P, Ferraro PJ (2015) Making parks make a diference: poor alignment of policy, planning and management with protected-area impact, and ways forward. Philos Trans R Soc Lond B 370:20140280

    Google Scholar 

  • Pryde MA, O’Donnell CF, Barker RJ (2005) Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biol Cons 126:175–185

    Google Scholar 

  • Rahim M (2016) Influence of environmental variables on distribution of wild goat (Capra Aegagrus), in Iraq by Maxent. Am Scien Res J Eng Technol Sci 18:97–107

    Google Scholar 

  • Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades. Int J Climatol 29:329–343

    Google Scholar 

  • Raza RH, Chauhan DS, Pasha MKS, Sinha S (2012) Illuminating the blind spot: a study on illegal trade in leopard parts in India (2001–2010). TRAFFIC India/WWF India, New Delhi

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol 16(2):561–576

    Google Scholar 

  • Roos A, Loy A, de Silva P, Hajkova P, Zemanová B (2015) Lutra lutra. The IUCN Red List of Threatened Species 2015: e.T12419A21935287. Downloaded on 06 March 2021

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  PubMed  Google Scholar 

  • Sarhangzadeh J, Yavari AR, Hemami MR, Jafari HR, Shams-Esfandabad B (2013) Habitat suitability modeling for wild goar (Capra aegagrus) in a mountainous arid area, cental Iran. Caspian J Environm Sci 11(1):41–51

    Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, p 868

    Google Scholar 

  • Sherwin H, Montgomery I, Lundy M (2012) The impact and implications of climate change for bats. Mammal Review 43

  • Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecol Soc 15

  • Solomon S, Manning M, Marquis M, Qin D (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Spooner FEB, Pearson RG, Freeman R (2018) Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob Change Biol 24:4521–4531

    Google Scholar 

  • Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2020) Panthera pardus (amended version of 2019 assessment). The IUCN Red List of Threatened Species 2020: e.T15954A163991139. Downloaded on 06 March 2021

  • Stralberg D, Jongsomjit D, Howell CA, Snyder MA, Alexander JD, Wiens JA, Root TL (2009) Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS One 4(9):6825

    Google Scholar 

  • Swanepoel LH, Somers MJ, van Hoven W, Schiess-Meier M, Owen C, Snyman A, Dalerum F (2015) Survival rates and causes of mortality of leopards Panthera pardus in southern Africa. Oryx 49(4):595–603

    Google Scholar 

  • Tatin L, Darreh-Shoori BF, Tourenq C, Tatin D, Azmayesh B (2003) The last populations of the Critically Endangered onager Equus hemionus onager in Iran: urgent requirements for protection and study. Oryx 37(4):448–491

    Google Scholar 

  • Thomas CD, Franco AM, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    PubMed  Google Scholar 

  • Thuiller W, Georges D, Engler R, M. Arau´jo. (2009) BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 32(369):373

    Google Scholar 

  • Trouwborst A, Blackmore A (2020a) Hot dogs, hungry bears, and wolves running out of mountain – international wildlife law and the effects of climate change on large carnivores. J Int Wildlife Law Policy 23(3):212–238

    Google Scholar 

  • Trouwborst A, Blackmore A (2020b) Hot dogs, hungry bears, and wolves running out of mountain—international wildlife law and the effects of climate change on large carnivores. J Int Wildlife Law Policy 23(3):212–238

    Google Scholar 

  • Trull N, Böhm M, Carr J (2018) Patterns and biases of climate change threats in the IUCN Red List. Conserv Biol 32(1):135–147. https://doi.org/10.1111/cobi.13022

    Article  PubMed  Google Scholar 

  • Vale CG, Brito JC (2015) Desert-adapted species are vulnerable to climate change: Insights from the warmest region on Earth. Global Ecol Conserv 4:369–379

    Google Scholar 

  • Wagner AP (2006) Behavioral ecology of striped hyena (Hyaena hyaena). PhD Dissertation, Montana State University, Bozeman, Montana

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611

    Google Scholar 

  • Werner NY, Saltz D, Daujat J, Baker K (2015) Dama mesopotamica. The IUCN red list of threatened species 2015: e. T 6232A97672550

  • Williams JE, Blois JL (2018) Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J Biogeogr 45(9):2175–2189

    Google Scholar 

  • Wisz MS, Tamstorf MP, Madsen J, Jespersen M (2008) Where might the western Svalbard tundra be vulnerable to pink-footed goose (Anser brachyrhynchus) population expansion? Clues from species distribution models. Divers Distrib 14(1):26–37

    Google Scholar 

  • Yousefi G, Faizolahi K, Darvish J, Safi K, Brito J (2019) The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J Mammal 100:55–71

    Google Scholar 

  • Zarenistanak M, Dhorde AG, Kripalani R, Dhorde AA (2015) Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran. Theoret Appl Climatol 122:421–440

    Google Scholar 

  • Zeebe RE (2013) Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Proc Natl Acad Sci 110:13739–13744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N, Rahimzadeh F, Taghipour A, Hantosh T (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006181

    Article  Google Scholar 

  • Zhao X (2011) Is global warming mainly due to anthropogenic greenhouse gas emissions? Energy Sources Part A 33:1985–1992

    CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraham Ahmadzadeh.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling editor: Vera Rduch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, E., Sayahnia, R., Ranjbaran, Y. et al. Dynamics of threatened mammalian distribution in Iran’s protected areas under climate change. Mamm Biol 101, 759–774 (2021). https://doi.org/10.1007/s42991-021-00136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-021-00136-z

Keywords

Navigation