Temporal overlap among small- and medium-sized mammals in a grassland and a forest–alpine meadow of Central Asia

Abstract

Assessing carnivores and prey temporal activity patterns as well as their overlap provides valuable insights into behavioural mitigations of competition. Moon phases may also play an important role in shaping wild mammals’ activity rhythms with prey showing peaks of activity in darkest nights. Camera trapping has enriched the possibility to conduct systematic studies of activity patterns and temporal niche overlap on mammalian guilds. In this study, we used camera traps to investigate intra-guild interactions and temporal partitioning among three meso-carnivores and their common prey in two Mongolian areas characterized, respectively, by a grassland and a forest–alpine meadow. We detected a moderate–high interspecific overlap in red foxes, pikas and tolai hares. We found a moderate overlap of temporal activity patterns among nocturnal carnivores as well as among nocturnal prey species. Interestingly, we observed a moderate overlap between hares and meso-carnivores. Amongst nocturnal species, the red fox and the stoat had a peak in activity in the brightest nights, the stone marten and the Mongolian silver vole preferred to range in dark nights, whereas activity of the tolai hare was not dependent on moon phases. Our work provides some first insights of temporal pattern interactions within a small- and meso-mammal assemblage in Central Asia. Our results indicate that meso-carnivores and their potential prey can co-occur in Central Mongolia by means of temporal partitioning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrahams MV, Dill LM (1989) A determination of the energetic equivalence of the risk of predation. Ecology 70:999–1007. https://doi.org/10.2307/1941368

    Article  Google Scholar 

  2. Allen ML, Sibarani MC, Utoyo L, Krofel M (2020) Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park. Anim Biodivers Conserv Sumatra. https://doi.org/10.32800/abc.2020.43.0097

    Article  Google Scholar 

  3. Andreoni A, Augugliaro C, Zozzoli R, Dartora F, Mori E (2020) Diel activity patterns and overlap between Eurasian red squirrels and Siberian chipmunks in native and introduced ranges. Ethol Ecol Evol. https://doi.org/10.1080/03949370.2020.1777211

    Article  Google Scholar 

  4. Augugliaro C, Paniccia C, Janchivlamdan C, Monti IE, Boldbaatar T, Munkhtsog B (2019) Mammal inventory in the mongolian gobi, with the southeasternmost documented record of the snow leopard, Panthera uncia (Schreber, 1775), in the country. Check List 15:565–578. https://doi.org/10.15560/15.4.565

    Article  Google Scholar 

  5. Augugliaro C, Worsøe Havmøller R, Monti IE, Worsøe Havmøller L, Janchivlamdan C, Badamjav L (2020) Non-volant mammal inventory of western Mongolian-Manchurian Grassland Ecoregion: a biogeographic crossroad worth preserving. Check List. https://doi.org/10.15560/16.2.287

    Article  Google Scholar 

  6. Azlan JM, Sharma DSK (2006) The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. Oryx 40:36–41. https://doi.org/10.1017/S0030605306000147

    Article  Google Scholar 

  7. Balme G, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav. https://doi.org/10.1016/j.anbehav.2006.12.014

    Article  Google Scholar 

  8. Batsaikhan N (2014) A field guide to the mammals of Mongolia. Doi: https://doi.org/10.13140/2.1.2554.5286

  9. Bertolino S, Colangelo P, Mori E, Capizzi D (2015) Good for management, not for conservation: an overview of research, conservation and management of Italian small mammals. Hystrix 26:25–35. https://doi.org/10.4404/hystrix-26.1-10263

    Article  Google Scholar 

  10. Brivio F, Grignolio S, Brogi R, Benazzi M, Bertolucci C, Apollonio M (2017) An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm Biol 84:73–81. https://doi.org/10.1016/j.mambio.2017.01.007

    Article  Google Scholar 

  11. Carbone C, Pettorelli N, Stephens PA (2011) The bigger they come, the harder they fall: body size and prey abundance influence predator-prey ratios. Biol Lett 7:312–315. https://doi.org/10.1098/rsbl.2010.0996

    Article  PubMed  Google Scholar 

  12. Cozzi G, Broekhuis F, McNutt JW, Turnbull LA, Macdonald DW, Schmid B (2012) Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology 93:2590–2599. https://doi.org/10.1890/12-0017.1

    Article  PubMed  Google Scholar 

  13. Dell’Agnello F, Martini M, Mori E, Mazza G, Mazza V, Zaccaroni M (2020) Winter activity rhythms of a rodent pest species in agricultural habitats. Mammal Res 65:69–74. https://doi.org/10.1007/s13364-019-00443-4

    Article  Google Scholar 

  14. Di Bitetti MS, Paviolo A, De Angelo C (2006) Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J Zool 270:153–163. https://doi.org/10.1111/j.1469-7998.2006.00102.x

    Article  Google Scholar 

  15. Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, María López-Martín J, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula. Mamm Rev 43:59–70. https://doi.org/10.1111/j.1365-2907.2011.00206.x

    Article  Google Scholar 

  16. Ellis DH, Tsengeg P, Whitlock P, Ellis MH (2000) Predators as prey at a Golden Eagle Aquila chrysaetos eyrie in Mongolia. Ibis 142:139–142. https://doi.org/10.1111/j.1474-919X.2000.tb07694.x

    Article  Google Scholar 

  17. Fattorini N, Pokheral CP (2012) Activity and habitat selection of the Indian crested porcupine. Ethol Ecol Evol 24:377–387. https://doi.org/10.1080/03949370.2012.705330

    Article  Google Scholar 

  18. Fattorini N, Burrini L, Morao G, Ferretti F, Romeo G, Mori E (2018) Splitting hairs: how to tell hair of hares apart for predator diet studies. Mamm Biol 85:84–89. https://doi.org/10.1016/j.mambio.2018.01.005

    Article  Google Scholar 

  19. Flores-Morales M, Vázquez J, Bautista A, Rodríguez-Martínez L, Monroy-Vilchis O (2019) Response of two sympatric carnivores to human disturbances of their habitat: the bobcat and coyote. Mamm Res 64:53–62. https://doi.org/10.1007/s13364-018-0385-x

    Article  Google Scholar 

  20. Foster VC, Sarmento P, Sollmann R, Tôrres N, Jácomo ATA, Negrões N, Fonseca C, Silveira L (2013) Jaguar and Puma activity patterns and predator-prey interactions in four brazilian biomes. Biotropica 45:1–7. https://doi.org/10.1111/btp.12021

    Article  Google Scholar 

  21. García-Olaechea A, Hurtado CM (2020) Temporal overlap between two sympatric carnivores in northwestern Peru and southwestern Ecuador. J Threat Taxa 12:15244–15250. https://doi.org/10.11609/jott.5483.12.2.15244-15250

    Article  Google Scholar 

  22. Gigliotti LC, Diefenbach DR (2018) Risky behavior and its effect on survival: snowshoe hare behavior under varying moonlight conditions. J Zool 305:27–34. https://doi.org/10.1111/jzo.12532

    Article  Google Scholar 

  23. Gilbert BS, Boutin S (1991) Effect of moonlight on winter activity of showshoe hares. Arct Alp Res 23:61. https://doi.org/10.2307/1551438

    Article  Google Scholar 

  24. Griffin PC, Griffin SC, Waroquiers C, Mills LS (2005) Mortality by moonlight: predation risk and the snowshoe hare. Behav Ecol 16:938–944. https://doi.org/10.1093/beheco/ari074

    Article  Google Scholar 

  25. Harmsen BJ, Foster RJ, Silver SC, Ostro LET, Doncaster CP (2011) Jaguar and puma activity patterns in relation to their main prey. Mamm Biol 76:320–324. https://doi.org/10.1016/j.mambio.2010.08.007

    Article  Google Scholar 

  26. Havmøller RW, Jacobsen NS, Scharff N, Rovero F, Zimmermann F (2020) Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. J Zool. https://doi.org/10.1111/jzo.12774

    Article  Google Scholar 

  27. Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394. https://doi.org/10.1080/11956860.1998.11682468

    Article  Google Scholar 

  28. Lashley MA, Cove MV, Chitwood MC, Penido G, Gardner B, Deperno CS, Moorman CE (2018) Estimating wildlife activity curves: comparison of methods and sample size. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22638-6

    CAS  Article  Google Scholar 

  29. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. https://doi.org/10.1139/z90-092

    Article  Google Scholar 

  30. Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J Zool 284:224–229. https://doi.org/10.1111/j.1469-7998.2011.00801.x

    Article  Google Scholar 

  31. Macdonald DW (2010) Food caching by Red foxes and some other carnivores. Z Tierpsychol 42:170–185. https://doi.org/10.1111/j.1439-0310.1976.tb00963.x

    Article  Google Scholar 

  32. Mandelik Y, Jones M, Dayan T (2003) Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol Ecol Res 5:501–515

    Google Scholar 

  33. Massara RL, Paschoal AMO, Bailey LL, Doherty PF, Barreto MF, Chiarello AG (2018) Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mamm Biol 92:86–93. https://doi.org/10.1016/j.mambio.2018.04.009

    Article  Google Scholar 

  34. Mayer M, Fog Bjerre DH, Sunde P (2020) Better safe than sorry: the response to a simulated predator and unfamiliar scent by the European hare. Ethology. https://doi.org/10.1111/eth.13019.10.1111/eth.13019

    Article  Google Scholar 

  35. Mazza G, Marraccini D, Mori E, Priori S, Marianelli L, Roversi PF, Gargani E (2019) Assessment of color response and activity rhythms of the invasive black planthopper Ricania speculum (Walker, 1851) using sticky traps. Bull Entomol Res. https://doi.org/10.1017/S000748531900083X

    Article  PubMed  Google Scholar 

  36. Meredith M, Ridout M (2014) Overview of the overlap package. Available at http://cran.cs.wwu.edu/web/packages/overlap/vignettes/overlap.pdf (Accessed on 23 April 2020)

  37. Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119:1044–1056. https://doi.org/10.1111/eth.12156

    Article  Google Scholar 

  38. Monterroso P, Alves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68:1403–1417. https://doi.org/10.1007/s00265-014-1748-1

    Article  Google Scholar 

  39. Mori E, Menchetti M (2019) Living with roommates in a shared den: spatial and temporal segregation among semifossorial mammals. Behav Proc 164:48–53. https://doi.org/10.1016/j.beproc.2019.04.013

    Article  Google Scholar 

  40. Mori E, Nourisson DH, Lovari S, Romeo G, Sforzi A (2014) Self-defence may not be enough: moonlight avoidance in a large, spiny rodent. J Zool 294:31–40. https://doi.org/10.1111/jzo.12145

    Article  Google Scholar 

  41. Mori E, Bagnato S, Serroni P, Sangiuliano A, Rotondaro F, Marchianò V, Cascini V, Poerio L, Ferretti F (2020a) Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J Zool 310:232–245. https://doi.org/10.1111/jzo.12743

    Article  Google Scholar 

  42. Mori E, Sangiovanni G, Corlatti L (2020b) Gimme shelter: the effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav Proc 170:103999. https://doi.org/10.1016/j.beproc.2019.103999

    Article  Google Scholar 

  43. Mori E, Lovari S, Cozzi F, Gabbrielli C, Giari C, Torniai L, Romeo G, Ferretti F, Fattorini N (2020c) Safety or satiety? Spatiotemporal behaviour of a threatened herbivore. Mamm Biol 100:49–61

    Article  Google Scholar 

  44. Murdoch JD, Buyandelger S (2010) An account of badger diet in an arid steppe region of Mongolia. J Arid Environ 74:1348–1350. https://doi.org/10.1016/j.jaridenv.2010.04.009

    Article  Google Scholar 

  45. Murdoch JD, Munkhzul T, Amgalanbaatar S, Reading RP (2006a) Checklist of mammals in ikh nart nature reserve. Mong J Biol Sci 4:69–74. https://doi.org/10.22353/mjbs.2006.04.18

    Article  Google Scholar 

  46. Murdoch JD, Munkhzul T, Reading RP (2006b) Pallas’ cat ecology and conservation in the semi-desert steppes of Mongolia. Cat News 45:18–19

    Google Scholar 

  47. Murdoch JD, Buyandelger S, Cypher BL (2009) Patterns of seed occurrence in corsac and red fox diets in Mongolia. J Arid Environ 73:381–384. https://doi.org/10.1016/j.jaridenv.2008.10.002

    Article  Google Scholar 

  48. Murdoch JD, Munkhzul T, Buyandelger S, Reading RP, Sillero-Zubiri C (2010) Seasonal food habits of corsac and red foxes in Mongolia and the potential for competition. Mamm Biol 75:36–44. https://doi.org/10.1016/j.mambio.2008.12.003

    Article  Google Scholar 

  49. Navarro-Castilla Á, Barja I (2014) Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemus sylvaticus)? Behav Ecol Sociobiol 68:1505–1512. https://doi.org/10.1007/s00265-014-1759-y

    Article  Google Scholar 

  50. O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139. https://doi.org/10.1017/S1367943003003172

    Article  Google Scholar 

  51. O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology: methods and analyses, camera traps in animal ecology: methods and analyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99495-4

    Google Scholar 

  52. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2

    Article  Google Scholar 

  53. Penteriani V, Kuparinen A, del Mar DM, Palomares F, López-Bao JV, Fedriani JM, Calzada J, Moreno S, Villafuerte R, Campioni L, Lourenço R (2013) Responses of a top and a meso predator and their prey to moon phases. Oecologia 173:753–766. https://doi.org/10.1007/s00442-013-2651-6

    Article  PubMed  Google Scholar 

  54. Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83:504–514. https://doi.org/10.1111/1365-2656.12148

    Article  PubMed  Google Scholar 

  55. Pudyatmoko S (2019) Spatiotemporal inter-predator and predator–prey interactions of mammalian species in a tropical savanna and deciduous forest in Indonesia. Mamm Res 64:191–202. https://doi.org/10.1007/s13364-018-0391-z

    Article  Google Scholar 

  56. Retzer V (2007) Forage competition between livestock and Mongolian Pika (Ochotona pallasi) in Southern Mongolian mountain steppes. Basic Appl Ecol 8:147–157. https://doi.org/10.1016/j.baae.2006.05.002

    Article  Google Scholar 

  57. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:6167. https://doi.org/10.1126/science.1241484

    CAS  Article  Google Scholar 

  58. Ross S, Munkhtsog B, Harris S (2010) Dietary composition, plasticity, and prey selection of Pallas’s cats. J Mamm 91:811–817. https://doi.org/10.1644/09-MAMM-A-342.1

    Article  Google Scholar 

  59. Ross S, Munkhtsog B, Harris S (2012) Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size. J Mamm 93:1292–1300. https://doi.org/10.1644/11-mamm-a-060.1

    Article  Google Scholar 

  60. Ross J, Hearn AJ, Johnson PJ, Macdonald DW (2013) Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. J Zool 290:96–106. https://doi.org/10.1111/jzo.12018

    Article  Google Scholar 

  61. Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228

    Article  Google Scholar 

  62. Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods Ecol Evol 5:1170

    Article  Google Scholar 

  63. Sábato MAL, Melo LFB, Magni EMV, Young RJ, Coelho CM (2006) A note on the effect of the full moon on the activity of wild maned wolves, Chrysocyon brachyurus. Behav Proc 73:228–230. https://doi.org/10.1016/j.beproc.2006.05.012

    Article  Google Scholar 

  64. Saisamorn A, Duengkae P, Pattanavibool A, Duangchantrasiri S, Simcharoen A, Smith JLD (2019) Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Folia Oecol 46:73–82. https://doi.org/10.2478/foecol-2019-0010

    Article  Google Scholar 

  65. Sánchez-Pinzón K, Reyna-Hurtado R, Meyer NFV (2019) Moon light and the activity patterns of baird’s tapir in the Calakmul region, Southern Mexico. Therya 11:1–6. https://doi.org/10.12933/therya-20-654

    Article  Google Scholar 

  66. Smith GW (1990) Home range and activity patterns of black-tailed jackrabbits. Gt Basin Nat 50:249–256

    Google Scholar 

  67. Soe E, Davison J, Süld K, Valdmann H, Laurimaa L, Saarma U (2017) Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mamm Rev 47:198–211. https://doi.org/10.1111/mam.12092

    Article  Google Scholar 

  68. Steen R, Barmoen M (2017) Diel activity of foraging eurasian red squirrels (Sciurus vulgaris) in the winter revealed by camera traps. Hystrix 28:43–47. https://doi.org/10.4404/hystrix-28.1-11997

    Article  Google Scholar 

  69. Sutherland WJ, Stephens DW, Krebs JR (1988) Foraging theory. J Ecol 76:295. https://doi.org/10.2307/2260475

    Article  Google Scholar 

  70. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178. https://doi.org/10.1111/j.1469-1795.2008.00169.x

    Article  Google Scholar 

  71. Torretta E, Serafini M, Puopolo F, Schenone L (2016) Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (N-W Italy). Acta Ethol 19:123–132. https://doi.org/10.1007/s10211-015-0231-y

    Article  Google Scholar 

  72. Torretta E, Mosini A, Piana M, Tirozzi P, Serafini M, Puopolo F, Saino N, Balestrieri A (2017) Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour 154:241–266. https://doi.org/10.1163/1568539X-00003420

    Article  Google Scholar 

  73. Upham NS, Hafner JC (2013) Do nocturnal rodents in the great basin desert avoid moonlight? J Mamm 94:59–72. https://doi.org/10.1644/12-mamm-a-076.1

    Article  Google Scholar 

  74. Van Duyne C, Ras E, de Vos AEW, de Boer WF, Henkens RHG, Usukhjargal D (2009) Wolf predation among reintroduced Przewalski horses in Hustai National Park, Mongolia. J Wildl Manage 73:836–843. https://doi.org/10.2193/2008-027

    Article  Google Scholar 

  75. Wei W, Cao Y, Zhang Y, Yin B, Wang J (2004) The influence of red fox’s odor on the reproduction of the plateau pika. Acta Theriol Sin 24:145–151

    Google Scholar 

  76. Zaccaroni M, Monti IE, Biliotti N, Munkhtsog B, Comand N, De Donà G, Augugliaro C (2020) A preliminary mammal inventory in the southernmost Mongolian forest: discovering a mesocarnivores heaven. Species 21:208–221

    Google Scholar 

  77. Zhang Y, Zhang Z, Wei W, Cao Y (2005) Time allocation of territorial activity and adaptations to environment of predation risk by Plateau pikas. Acta Theriol Sin 25:333–338

    Google Scholar 

  78. Zhao G, Yang H, Xie B, Gong Y, Ge J, Feng L (2020) Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob Ecol Conserv 21:e00897

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members of the Italian and Danish teams, which collected data in the field and co-funded the data collection in Arkhangai and Tov, sharing the costs. Part of the data used in this work derives from a wider project funded by the Biodiversity Information Facility Asia (BIFA2_02). We thank the Protected Area Department of the Ministry of Environment Green Development and Tourism of Mongolia, and the staff of Khangai Nuuru National Park for supporting this project. We thank our local guide Battoyga and all the local herders for their assistance. Part of the camera traps were kindly provided by the UNIL—University of Lausanne (Switzerland). The Subject Editor Raquel Monclús, Rasmus Worsøe Havmøller and an anonymous reviewer greatly improved our MS with their comments.

Funding

This study was partly supported by Biodiversity Information Facility Asia grant (BIFA2_02).

Author information

Affiliations

Authors

Contributions

EM, CP and CA conceived the study and carried out most analyses, MC organised the dataset and participated in analyses, CA and BM collected field data. All authors participated in writing the MS and approved the final version.

Corresponding author

Correspondence to Chiara Paniccia.

Ethics declarations

Conflict of interest

Authors certify that they have no affiliation with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript. Therefore, they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Raquel Monclús.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mori, E., Paniccia, C., Munkhtsog, B. et al. Temporal overlap among small- and medium-sized mammals in a grassland and a forest–alpine meadow of Central Asia. Mamm Biol (2021). https://doi.org/10.1007/s42991-020-00085-z

Download citation

Keywords

  • Activity pattern
  • Camera trapping
  • Predator–prey interactions
  • Co-occurrence mechanisms
  • Moon phases