Abrahams MV, Dill LM (1989) A determination of the energetic equivalence of the risk of predation. Ecology 70:999–1007. https://doi.org/10.2307/1941368
Article
Google Scholar
Allen ML, Sibarani MC, Utoyo L, Krofel M (2020) Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park. Anim Biodivers Conserv Sumatra. https://doi.org/10.32800/abc.2020.43.0097
Article
Google Scholar
Andreoni A, Augugliaro C, Zozzoli R, Dartora F, Mori E (2020) Diel activity patterns and overlap between Eurasian red squirrels and Siberian chipmunks in native and introduced ranges. Ethol Ecol Evol. https://doi.org/10.1080/03949370.2020.1777211
Article
Google Scholar
Augugliaro C, Paniccia C, Janchivlamdan C, Monti IE, Boldbaatar T, Munkhtsog B (2019) Mammal inventory in the mongolian gobi, with the southeasternmost documented record of the snow leopard, Panthera uncia (Schreber, 1775), in the country. Check List 15:565–578. https://doi.org/10.15560/15.4.565
Article
Google Scholar
Augugliaro C, Worsøe Havmøller R, Monti IE, Worsøe Havmøller L, Janchivlamdan C, Badamjav L (2020) Non-volant mammal inventory of western Mongolian-Manchurian Grassland Ecoregion: a biogeographic crossroad worth preserving. Check List. https://doi.org/10.15560/16.2.287
Article
Google Scholar
Azlan JM, Sharma DSK (2006) The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. Oryx 40:36–41. https://doi.org/10.1017/S0030605306000147
Article
Google Scholar
Balme G, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav. https://doi.org/10.1016/j.anbehav.2006.12.014
Article
Google Scholar
Batsaikhan N (2014) A field guide to the mammals of Mongolia. Doi: https://doi.org/10.13140/2.1.2554.5286
Bertolino S, Colangelo P, Mori E, Capizzi D (2015) Good for management, not for conservation: an overview of research, conservation and management of Italian small mammals. Hystrix 26:25–35. https://doi.org/10.4404/hystrix-26.1-10263
Article
Google Scholar
Brivio F, Grignolio S, Brogi R, Benazzi M, Bertolucci C, Apollonio M (2017) An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm Biol 84:73–81. https://doi.org/10.1016/j.mambio.2017.01.007
Article
Google Scholar
Carbone C, Pettorelli N, Stephens PA (2011) The bigger they come, the harder they fall: body size and prey abundance influence predator-prey ratios. Biol Lett 7:312–315. https://doi.org/10.1098/rsbl.2010.0996
Article
PubMed
Google Scholar
Cozzi G, Broekhuis F, McNutt JW, Turnbull LA, Macdonald DW, Schmid B (2012) Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology 93:2590–2599. https://doi.org/10.1890/12-0017.1
Article
PubMed
Google Scholar
Dell’Agnello F, Martini M, Mori E, Mazza G, Mazza V, Zaccaroni M (2020) Winter activity rhythms of a rodent pest species in agricultural habitats. Mammal Res 65:69–74. https://doi.org/10.1007/s13364-019-00443-4
Article
Google Scholar
Di Bitetti MS, Paviolo A, De Angelo C (2006) Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J Zool 270:153–163. https://doi.org/10.1111/j.1469-7998.2006.00102.x
Article
Google Scholar
Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, María López-Martín J, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula. Mamm Rev 43:59–70. https://doi.org/10.1111/j.1365-2907.2011.00206.x
Article
Google Scholar
Ellis DH, Tsengeg P, Whitlock P, Ellis MH (2000) Predators as prey at a Golden Eagle Aquila chrysaetos eyrie in Mongolia. Ibis 142:139–142. https://doi.org/10.1111/j.1474-919X.2000.tb07694.x
Article
Google Scholar
Fattorini N, Pokheral CP (2012) Activity and habitat selection of the Indian crested porcupine. Ethol Ecol Evol 24:377–387. https://doi.org/10.1080/03949370.2012.705330
Article
Google Scholar
Fattorini N, Burrini L, Morao G, Ferretti F, Romeo G, Mori E (2018) Splitting hairs: how to tell hair of hares apart for predator diet studies. Mamm Biol 85:84–89. https://doi.org/10.1016/j.mambio.2018.01.005
Article
Google Scholar
Flores-Morales M, Vázquez J, Bautista A, Rodríguez-Martínez L, Monroy-Vilchis O (2019) Response of two sympatric carnivores to human disturbances of their habitat: the bobcat and coyote. Mamm Res 64:53–62. https://doi.org/10.1007/s13364-018-0385-x
Article
Google Scholar
Foster VC, Sarmento P, Sollmann R, Tôrres N, Jácomo ATA, Negrões N, Fonseca C, Silveira L (2013) Jaguar and Puma activity patterns and predator-prey interactions in four brazilian biomes. Biotropica 45:1–7. https://doi.org/10.1111/btp.12021
Article
Google Scholar
García-Olaechea A, Hurtado CM (2020) Temporal overlap between two sympatric carnivores in northwestern Peru and southwestern Ecuador. J Threat Taxa 12:15244–15250. https://doi.org/10.11609/jott.5483.12.2.15244-15250
Article
Google Scholar
Gigliotti LC, Diefenbach DR (2018) Risky behavior and its effect on survival: snowshoe hare behavior under varying moonlight conditions. J Zool 305:27–34. https://doi.org/10.1111/jzo.12532
Article
Google Scholar
Gilbert BS, Boutin S (1991) Effect of moonlight on winter activity of showshoe hares. Arct Alp Res 23:61. https://doi.org/10.2307/1551438
Article
Google Scholar
Griffin PC, Griffin SC, Waroquiers C, Mills LS (2005) Mortality by moonlight: predation risk and the snowshoe hare. Behav Ecol 16:938–944. https://doi.org/10.1093/beheco/ari074
Article
Google Scholar
Harmsen BJ, Foster RJ, Silver SC, Ostro LET, Doncaster CP (2011) Jaguar and puma activity patterns in relation to their main prey. Mamm Biol 76:320–324. https://doi.org/10.1016/j.mambio.2010.08.007
Article
Google Scholar
Havmøller RW, Jacobsen NS, Scharff N, Rovero F, Zimmermann F (2020) Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. J Zool. https://doi.org/10.1111/jzo.12774
Article
Google Scholar
Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394. https://doi.org/10.1080/11956860.1998.11682468
Article
Google Scholar
Lashley MA, Cove MV, Chitwood MC, Penido G, Gardner B, Deperno CS, Moorman CE (2018) Estimating wildlife activity curves: comparison of methods and sample size. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22638-6
CAS
Article
Google Scholar
Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. https://doi.org/10.1139/z90-092
Article
Google Scholar
Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J Zool 284:224–229. https://doi.org/10.1111/j.1469-7998.2011.00801.x
Article
Google Scholar
Macdonald DW (2010) Food caching by Red foxes and some other carnivores. Z Tierpsychol 42:170–185. https://doi.org/10.1111/j.1439-0310.1976.tb00963.x
Article
Google Scholar
Mandelik Y, Jones M, Dayan T (2003) Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol Ecol Res 5:501–515
Google Scholar
Massara RL, Paschoal AMO, Bailey LL, Doherty PF, Barreto MF, Chiarello AG (2018) Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mamm Biol 92:86–93. https://doi.org/10.1016/j.mambio.2018.04.009
Article
Google Scholar
Mayer M, Fog Bjerre DH, Sunde P (2020) Better safe than sorry: the response to a simulated predator and unfamiliar scent by the European hare. Ethology. https://doi.org/10.1111/eth.13019.10.1111/eth.13019
Article
Google Scholar
Mazza G, Marraccini D, Mori E, Priori S, Marianelli L, Roversi PF, Gargani E (2019) Assessment of color response and activity rhythms of the invasive black planthopper Ricania speculum (Walker, 1851) using sticky traps. Bull Entomol Res. https://doi.org/10.1017/S000748531900083X
Article
PubMed
Google Scholar
Meredith M, Ridout M (2014) Overview of the overlap package. Available at http://cran.cs.wwu.edu/web/packages/overlap/vignettes/overlap.pdf (Accessed on 23 April 2020)
Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119:1044–1056. https://doi.org/10.1111/eth.12156
Article
Google Scholar
Monterroso P, Alves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68:1403–1417. https://doi.org/10.1007/s00265-014-1748-1
Article
Google Scholar
Mori E, Menchetti M (2019) Living with roommates in a shared den: spatial and temporal segregation among semifossorial mammals. Behav Proc 164:48–53. https://doi.org/10.1016/j.beproc.2019.04.013
Article
Google Scholar
Mori E, Nourisson DH, Lovari S, Romeo G, Sforzi A (2014) Self-defence may not be enough: moonlight avoidance in a large, spiny rodent. J Zool 294:31–40. https://doi.org/10.1111/jzo.12145
Article
Google Scholar
Mori E, Bagnato S, Serroni P, Sangiuliano A, Rotondaro F, Marchianò V, Cascini V, Poerio L, Ferretti F (2020a) Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J Zool 310:232–245. https://doi.org/10.1111/jzo.12743
Article
Google Scholar
Mori E, Sangiovanni G, Corlatti L (2020b) Gimme shelter: the effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav Proc 170:103999. https://doi.org/10.1016/j.beproc.2019.103999
Article
Google Scholar
Mori E, Lovari S, Cozzi F, Gabbrielli C, Giari C, Torniai L, Romeo G, Ferretti F, Fattorini N (2020c) Safety or satiety? Spatiotemporal behaviour of a threatened herbivore. Mamm Biol 100:49–61
Article
Google Scholar
Murdoch JD, Buyandelger S (2010) An account of badger diet in an arid steppe region of Mongolia. J Arid Environ 74:1348–1350. https://doi.org/10.1016/j.jaridenv.2010.04.009
Article
Google Scholar
Murdoch JD, Munkhzul T, Amgalanbaatar S, Reading RP (2006a) Checklist of mammals in ikh nart nature reserve. Mong J Biol Sci 4:69–74. https://doi.org/10.22353/mjbs.2006.04.18
Article
Google Scholar
Murdoch JD, Munkhzul T, Reading RP (2006b) Pallas’ cat ecology and conservation in the semi-desert steppes of Mongolia. Cat News 45:18–19
Google Scholar
Murdoch JD, Buyandelger S, Cypher BL (2009) Patterns of seed occurrence in corsac and red fox diets in Mongolia. J Arid Environ 73:381–384. https://doi.org/10.1016/j.jaridenv.2008.10.002
Article
Google Scholar
Murdoch JD, Munkhzul T, Buyandelger S, Reading RP, Sillero-Zubiri C (2010) Seasonal food habits of corsac and red foxes in Mongolia and the potential for competition. Mamm Biol 75:36–44. https://doi.org/10.1016/j.mambio.2008.12.003
Article
Google Scholar
Navarro-Castilla Á, Barja I (2014) Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemus sylvaticus)? Behav Ecol Sociobiol 68:1505–1512. https://doi.org/10.1007/s00265-014-1759-y
Article
Google Scholar
O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139. https://doi.org/10.1017/S1367943003003172
Article
Google Scholar
O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology: methods and analyses, camera traps in animal ecology: methods and analyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99495-4
Book
Google Scholar
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2
Article
Google Scholar
Penteriani V, Kuparinen A, del Mar DM, Palomares F, López-Bao JV, Fedriani JM, Calzada J, Moreno S, Villafuerte R, Campioni L, Lourenço R (2013) Responses of a top and a meso predator and their prey to moon phases. Oecologia 173:753–766. https://doi.org/10.1007/s00442-013-2651-6
Article
PubMed
Google Scholar
Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83:504–514. https://doi.org/10.1111/1365-2656.12148
Article
PubMed
Google Scholar
Pudyatmoko S (2019) Spatiotemporal inter-predator and predator–prey interactions of mammalian species in a tropical savanna and deciduous forest in Indonesia. Mamm Res 64:191–202. https://doi.org/10.1007/s13364-018-0391-z
Article
Google Scholar
Retzer V (2007) Forage competition between livestock and Mongolian Pika (Ochotona pallasi) in Southern Mongolian mountain steppes. Basic Appl Ecol 8:147–157. https://doi.org/10.1016/j.baae.2006.05.002
Article
Google Scholar
Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:6167. https://doi.org/10.1126/science.1241484
CAS
Article
Google Scholar
Ross S, Munkhtsog B, Harris S (2010) Dietary composition, plasticity, and prey selection of Pallas’s cats. J Mamm 91:811–817. https://doi.org/10.1644/09-MAMM-A-342.1
Article
Google Scholar
Ross S, Munkhtsog B, Harris S (2012) Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size. J Mamm 93:1292–1300. https://doi.org/10.1644/11-mamm-a-060.1
Article
Google Scholar
Ross J, Hearn AJ, Johnson PJ, Macdonald DW (2013) Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. J Zool 290:96–106. https://doi.org/10.1111/jzo.12018
Article
Google Scholar
Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228
Article
Google Scholar
Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods Ecol Evol 5:1170
Article
Google Scholar
Sábato MAL, Melo LFB, Magni EMV, Young RJ, Coelho CM (2006) A note on the effect of the full moon on the activity of wild maned wolves, Chrysocyon brachyurus. Behav Proc 73:228–230. https://doi.org/10.1016/j.beproc.2006.05.012
Article
Google Scholar
Saisamorn A, Duengkae P, Pattanavibool A, Duangchantrasiri S, Simcharoen A, Smith JLD (2019) Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Folia Oecol 46:73–82. https://doi.org/10.2478/foecol-2019-0010
Article
Google Scholar
Sánchez-Pinzón K, Reyna-Hurtado R, Meyer NFV (2019) Moon light and the activity patterns of baird’s tapir in the Calakmul region, Southern Mexico. Therya 11:1–6. https://doi.org/10.12933/therya-20-654
Article
Google Scholar
Smith GW (1990) Home range and activity patterns of black-tailed jackrabbits. Gt Basin Nat 50:249–256
Google Scholar
Soe E, Davison J, Süld K, Valdmann H, Laurimaa L, Saarma U (2017) Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mamm Rev 47:198–211. https://doi.org/10.1111/mam.12092
Article
Google Scholar
Steen R, Barmoen M (2017) Diel activity of foraging eurasian red squirrels (Sciurus vulgaris) in the winter revealed by camera traps. Hystrix 28:43–47. https://doi.org/10.4404/hystrix-28.1-11997
Article
Google Scholar
Sutherland WJ, Stephens DW, Krebs JR (1988) Foraging theory. J Ecol 76:295. https://doi.org/10.2307/2260475
Article
Google Scholar
Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178. https://doi.org/10.1111/j.1469-1795.2008.00169.x
Article
Google Scholar
Torretta E, Serafini M, Puopolo F, Schenone L (2016) Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (N-W Italy). Acta Ethol 19:123–132. https://doi.org/10.1007/s10211-015-0231-y
Article
Google Scholar
Torretta E, Mosini A, Piana M, Tirozzi P, Serafini M, Puopolo F, Saino N, Balestrieri A (2017) Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour 154:241–266. https://doi.org/10.1163/1568539X-00003420
Article
Google Scholar
Upham NS, Hafner JC (2013) Do nocturnal rodents in the great basin desert avoid moonlight? J Mamm 94:59–72. https://doi.org/10.1644/12-mamm-a-076.1
Article
Google Scholar
Van Duyne C, Ras E, de Vos AEW, de Boer WF, Henkens RHG, Usukhjargal D (2009) Wolf predation among reintroduced Przewalski horses in Hustai National Park, Mongolia. J Wildl Manage 73:836–843. https://doi.org/10.2193/2008-027
Article
Google Scholar
Wei W, Cao Y, Zhang Y, Yin B, Wang J (2004) The influence of red fox’s odor on the reproduction of the plateau pika. Acta Theriol Sin 24:145–151
Google Scholar
Zaccaroni M, Monti IE, Biliotti N, Munkhtsog B, Comand N, De Donà G, Augugliaro C (2020) A preliminary mammal inventory in the southernmost Mongolian forest: discovering a mesocarnivores heaven. Species 21:208–221
Google Scholar
Zhang Y, Zhang Z, Wei W, Cao Y (2005) Time allocation of territorial activity and adaptations to environment of predation risk by Plateau pikas. Acta Theriol Sin 25:333–338
Google Scholar
Zhao G, Yang H, Xie B, Gong Y, Ge J, Feng L (2020) Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob Ecol Conserv 21:e00897
Article
Google Scholar