Skip to main content

Tracing the geographic origin of common pipistrelles (Pipistrellus pipistrellus) swarming at a mass hibernaculum

Abstract

Mass swarming of tens of thousands of common pipistrelles in front of hibernacula of the Carpathian Mountains suggests that bats may originate from a large catchment area. However, until now neither banding nor molecular data have resolved the geographic origin of common pipistrelles at these sites. Here, we measured the acoustic activity of bats and the stable hydrogen isotope ratios (δ2H) in metabolically inert fur keratin of bats to infer the relative swarming activity and the putative summer origin of bats, respectively, observed in autumn at Erňa cave, one of the largest bat hibernacula in Europe. Swarming activity declined with decreasing ambient temperature during the early season, while it increased during colder days towards the onset of hibernation. Based on δ2H values, we deduced that about 50% of the animals did not have a local origin. Provenance of all but one of these migrants was identified as the Pannonian Basin, while a single long-distance migrant may have originated from the northern margin of the species’ European distribution range. Modelling the variation in δ2H values of bats in response to sex, body condition and season suggested that, towards the onset of hibernation, males of low body condition were likely to be of distant geographic origin. Throughout the swarming season, females were mostly of local origin, yet towards the onset of hibernation, their body condition was not as variable as in males. We conclude that common pipistrelles observed at this mass hibernacula site are facultative migrants, which may undertake long-distance seasonal movements occasionally. At our study site, common pipistrelles are more likely to include long-distance migrants because of the mass occurrence of this species at this large hibernaculum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Avery MI (1991) Pipistrelle Pipistrellus pipistrellus. In: Corbet GB, Harris S (eds) The handbook of British mammals. Oxford University Press, Oxford, pp 124–128

    Google Scholar 

  2. Baagøe HJ (2001) Eptesicus serotinus (Schreber, 1774)—Breitflügelfledermaus. In: Krapp F (ed) Handbuch der Säugetiere Europas. Band 4: Fledertiere. Teil I: Chiroptera I. Rhinolophidae, Vespertilionidae 1. AULA-Verlag, Wiebelsheim, pp 519–559

    Google Scholar 

  3. Barratt EM, Deaville R, Burland TM, Bruford MW, Jones G, Racey PA, Wayne RK (1997) DNA answers the call of pipistrelle bat species. Nature 387:138–139

    CAS  PubMed  Google Scholar 

  4. Bartoń K (2018) MuMIn: multi-model inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn

  5. Bartonička T, Miketová N, Hulva P (2019) High throughput bioacoustic monitoring and phenology of the greater noctule bat (Nyctalus lasiopterus) compared to other migratory species. Acta Chiropterol 21:75–85

    Google Scholar 

  6. Bartoničková L, Reiter A, Bartonička T (2016) Mating and courtship behaviour of two sibling bat species (Pipistrellus pipistrellus, P. pygmaeus) in the vicinity of a hibernaculum. Acta Chiropterol 18:467–475

    Google Scholar 

  7. Bogdanowicz W, Piksa K, Tereba A (2012) Hybridization hotspots at bat swarming sites. PLoS ONE 7:e53334

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Britzke ER, Loeb SC, Romanek CS, Hobson KA, Vonhof MJ (2012) Variation in catchment areas of Indiana bat (Myotis sodalis) hibernacula inferred from stable hydrogen (δ2H) isotope analysis. Can J Zool 90:1243–1250

    CAS  Google Scholar 

  9. Bryja J, Kaňuch P, Fornůsková A, Bartonička T, Řehák Z (2009) Low population genetic structuring of two cryptic bat species suggests their migratory behaviour in continental Europe. Biol J Linn Soc 96:103–114

    Google Scholar 

  10. Bücs S, Jére C, Csősz I, Barti L, Szodoray-Parádi F (2012) Distribution and conservation status of cave-dwelling bats in the Romanian Western Carpathians. Vespertilio 16:97–116

    Google Scholar 

  11. Bureš I, Beron P (1962) Dve novi dalečni prelitanija na prilepi (Chiroptera). Izvestja Zoologičnego Institutu Muzea 11:47–57

    Google Scholar 

  12. Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc R Soc B 266:975–980

    Google Scholar 

  13. Chaverri G, Ancillotto L, Russo D (2018) Social communication in bats. Biol Rev 93:1938–1954

    PubMed  Google Scholar 

  14. Courtiol A, Rousset F, Rohwäder M-S, Soto DX, Lehnert LS, Voigt CC, Hobson KA, Wassenaar LI, Kramer-Schadt S (2019) Isoscape computation and inference of spatial origins with mixed models using the R package IsoriX. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Academic Press, London, pp 207–236

    Google Scholar 

  15. Dietz C, von Helversen O, Nill D (2009) Bats of Britain. Europe and Northwest Africa, A and C Black, London

    Google Scholar 

  16. Dumitrescu M, Orghidan T (1963) Contribution à la connaissance de la biologie de Pipistrellus pipistrellus Schreber. Annales de Spéléologie 18:511–517

    Google Scholar 

  17. Fenton MB (1969) Summer activity of Myotis lucifugus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. Can J Zool 47:597–602

    Google Scholar 

  18. Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 156–208

    Google Scholar 

  19. Fox J (2003) Effect displays in R for generalised linear models. J Stat Soft 8:1–9

    Google Scholar 

  20. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  21. Fraser EE, Longstaffe FJ, Fenton MB (2013) Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool 91:533–544

    Google Scholar 

  22. Fraser EE, Brooks D, Longstaffe FJ (2017) Stable isotope investigation of the migratory behavior of silver-haired bats (Lasionycteris noctivagans) in eastern North America. J Mamm 98:1225–1235

    Google Scholar 

  23. Furmankiewicz J (2008) Population size, catchment area, and sex-influenced differences in autumn and spring swarming of the brown long-eared bat (Plecotus auritus). Can J Zool 86:207–216

    Google Scholar 

  24. Furmankiewicz J, Altringham J (2007) Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conserv Genet 8:913–923

    CAS  Google Scholar 

  25. Gaisler J, Hanák V, Hanza V, Jarský V (2003) Výsledky kroužkování netopýrů v České republice a na Slovensku, 1948–2000. Vespertilio 7:3–61

    Google Scholar 

  26. Glover AM, Altringham JD (2008) Cave selection and use by swarming bat species. Biol Conserv 141:1493–1504

    Google Scholar 

  27. Haarsma A-J, Lina PH, Voute AM, Siepel H (2019) Male long-distance migrant turned sedentary; the West European pond bat (Myotis dasycneme) alters their migration and hibernation behaviour. PLoS ONE 14:e0217810

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanzal V, Kříž K (2017) Masové zimoviště netopýra hvízdavého (Pipistrellus pipistrellus) v obtokovém kanálu vodního díla Slapy (Chiroptera: Vespertilionidae). Lynx n s 48:203–206

    Google Scholar 

  29. Holko L, Dóša M, Michalko J, Šanda M (2012) Isotopes of oxygen-18 and deuterium in precipitation in Slovakia. J Hydrol Hydromech 60:265–276

    CAS  Google Scholar 

  30. Horáček I (1984) Remarks on the causality of population decline in European bats. Myotis 21–22:138–147

    Google Scholar 

  31. Horáček I, Jahelková H (2005) History of the Pipistrellus pipistrellus group in Central Europe in light of its fossil record. Acta Chiropterol 7:189–204

    Google Scholar 

  32. Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe: a review of banding data and literature. Federal agency for nature conservation, Bonn

    Google Scholar 

  33. Ignaczak M, Postawa T, Lesiński G, Gottfried I (2019) The role of autumnal swarming behaviour and ambient air temperature in the variation of body mass in temperate bat species. Hystrix 30:65–73

    Google Scholar 

  34. Kaňuch P, Fornůsková A, Bartonička T, Bryja J, Řehák Z (2010) Do two cryptic pipistrelle bat species differ in their autumn and winter roosting strategies within the range of sympatry? Folia Zool 59:102–107

    Google Scholar 

  35. Kerbiriou C, Julien JF, Monsarrat S, Lustrat P, Haquart A, Robert A (2015) Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum. Wildl Res 42:35–43

    Google Scholar 

  36. Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein’s bat. Conserv Genet 4:491–499

    CAS  Google Scholar 

  37. Kiefer A, Schreiber C, Veith M (1994) Netzfänge in einem unterirdischen Fledermausquartier in der Eifel (BRD, Rheinland-Pfalz)—phänologie, populationsschätzung, verhalten. Nyctalus (NF) 5(3/4):302–318

    Google Scholar 

  38. Kunz TH (1982) Roosting ecology of bats. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 1–55

    Google Scholar 

  39. Lehnert LS, Kramer-Schadt S, Teige T, Hoffmeister U, Popa-Lisseanu A, Bontadina F, Ciechanowski M, Dechmann DK, Kravchenko K, Presetnik P, Starrach M, Straube M, Zoephel U, Voigt CC (2018) Variability and repeatability of noctule bat migration in Central Europe: evidence for partial and differential migration. Proc R Soc B 285:20182174

    PubMed  Google Scholar 

  40. Masing M, Poots L, Randla T, Lutsar L (1999) 50 years of bat-ringing in Estonia: methods and the main results. Plecotus et Al 2:20–32

    Google Scholar 

  41. Matis Š, Uhrin M, Pjenčák P (2002) Zimovanie netopierov v jaskyni Erňa Vespertilio 6:235–236

    Google Scholar 

  42. McCracken GF, Safi K, Kunz TH, Dechmann DK, Swartz SM, Wikelski M (2016) Airplane tracking documents the fastest flight speeds recorded for bats. R Soc Open Sci 3:160398

    PubMed  PubMed Central  Google Scholar 

  43. Naďo L, Lőbbová D, Hapl E, Ceľuch M, Uhrin M, Šara M, Kaňuch P (2019) Highly selective roosting of the giant noctule bat and its astonishing foraging activity by GPS tracking in a mountain environment. Mamm Res 64:587–594

    Google Scholar 

  44. Nagy ZL, Postawa T (2011) Seasonal and geographical distribution of cave-dwelling bats in Romania: implications for conservation. Anim Conserv 14:74–86

    CAS  PubMed  Google Scholar 

  45. Nagy ZL, Szántó L (2003) The occurrence of hibernating Pipistrellus pipistrellus (Schreber, 1774) in caves of the Carpathian Basin. Acta Chiropterol 5:155–160

    Google Scholar 

  46. Newton I (2012) Obligate and facultative migration in birds: ecological aspects. J Ornithol 153:171–180

    Google Scholar 

  47. Norquay KJO, Martinez-Nuñez F, Dubois JE, Monson KM, Willis CKR (2013) Long-distance movements of little brown bats (Myotis lucifugus). J Mamm 94:506–515

    Google Scholar 

  48. Nusová G, Šemeláková M, Paučulová L, Uhrin M, Kaňuch P (2017) Haplotype diversity in common pipistrelle’s mass hibernacula from central Europe. Biologia 72:548–553

    Google Scholar 

  49. Nusová G, Fulín M, Uhrin M, Uhrovič D, Kaňuch P (2019) Spatiotemporal pattern in the autumn invasion behaviour of the common pipistrelle, Pipistrellus pipistrellus: review with a case study. Mamm Biol 97:13–21

    Google Scholar 

  50. Palášthy J (1988) Výsledky obrúčkovania netopierov (Chiroptera) v okrese Prešov (východné Slovensko). Zborník Východoslovenského múzea v Košiciach, Prírodné vedy 28:91–108

    Google Scholar 

  51. Parsons KN, Jones G, Greenaway F (2003) Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. J Zool 261:257–264

    Google Scholar 

  52. Petersons G (1990) Die Rauhhautfledermaus, Pipistrellus nathusii (Keyserling u Blasius, 1839) in Lettland: Vorkommen, Phänologie und Migration. Nyctalus (NF) 3(2):81–98

    Google Scholar 

  53. Petit E, Mayer F (1999) Male dispersal in the noctule bat (Nyctalus noctula): where are the limits? Proc R Soc B 266:1717–1722

    CAS  PubMed  Google Scholar 

  54. Popa-Lisseanu AG, Sörgel K, Luckner A, Wassenaar LI, Ibáñez C, Kramer-Schadt S, Ciechanowski M, Görföl T, Niermann I, Beuneux G, Mysłajek RW, Juste J, Fonderflick J, Kelm DH, Voigt CC (2012) A triple-isotope approach to predict the breeding origins of European bats. PLoS ONE 7:e30388

    CAS  PubMed  PubMed Central  Google Scholar 

  55. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

  56. Ransome R (1990) The natural history of hibernating bats. Christopher Helm, London

    Google Scholar 

  57. Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 14:4299–4312

    CAS  PubMed  Google Scholar 

  58. Rivers NM, Butlin RK, Altringham JD (2006) Autumn swarming behaviour of Natterer’s bats in the UK: population size, catchment area and dispersal. Biol Conserv 127:215–226

    Google Scholar 

  59. Roby PL, Gumbert MW, Lacki MJ (2019) Nine years of Indiana bat (Myotis sodalis) spring migration behaviour. J Mamm 100:1501–1511

    Google Scholar 

  60. Roer H (1989) Field experiments about the homing behaviour of the common pipistrelle (Pipistrellus pipistrellus Schreber). In: Hanák V, Horáček I, Gaisler J (eds) European bat research 1987. Charles University Press, Prague, pp 551–558

    Google Scholar 

  61. Russ JM, Hutson AM, Montgomery WI, Racey PA, Speakman JR (2001) The status of Nathusius’ pipistrelle (Pipistrellus nathusii Keyserling & Blasius, 1839) in the British Isles. J Zool 254:91–100

    Google Scholar 

  62. Sachteleben J (1991) Zum „Invasions“-verhalten der Zwergfledermaus (Pipistrellus pipistrellus). Nyctalus (NF) 4(1):51–66

    Google Scholar 

  63. Sachteleben J, von Helversen O (2006) Songflight behaviour and mating system of the pipistrelle bat (Pipistrellus pipistrellus) in an urban habitat. Acta Chiropterol 8:391–401

    Google Scholar 

  64. Segers JL, Broders HG (2015) Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures in bat fur indicate swarming sites have catchment areas for bats from different summering areas. PLoS ONE 10:e0125755

    PubMed  PubMed Central  Google Scholar 

  65. Sendor T, Simon M (2003) Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival. J Anim Ecol 72:308–320

    Google Scholar 

  66. Sendor T, Kugelschafter K, Simon M (2000) Seasonal variation of activity patterns at a pipistrelle (Pipistrellus pipistrellus) hibernaculum. Myotis 38:91–109

    Google Scholar 

  67. Serra-Cobo J, Sanz-Trullen V, Martinez-Rica JP (1998) Migratory movements of Miniopterus schreibersii in the north-east of Spain. Acta Theriol 43:271–283

    Google Scholar 

  68. Steffens R, Zöphel U, Brockmann D (2004) 40th anniversary Bat Marking Centre Dresden—evaluation of methods and overview of results. Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  69. Straka TM, Greif S, Schultz S, Goerlitz HR, Voigt CC (2020) The effect of cave illumination on bats. Glob Ecol Conserv 21:e00808

    Google Scholar 

  70. Sturgis BE, Aispuro AA, Vulinec K (2019) Variation in deuterium levels of non-migratory Eptesicus fuscus (big brown bat) along the Delmarva Peninsula. Northeast Nat 26:202–213

    Google Scholar 

  71. Sztencel-Jabłonka A, Bogdanowicz W (2012) Population genetics study of common (Pipistrellus pipistrellus) and soprano (Pipistrellus pygmaeus) pipistrelle bats from central Europe suggests interspecific hybridization. Can J Zool 90:1251–1260

    Google Scholar 

  72. Taake KH, Vierhaus H (2004) Pipistrellus pipistrellus (Schreber, 1774)—Zwergfledermaus. In: Krapp F (ed) Handbuch der Säugetiere Europas Band 4/II: Fledertiere Teil II: Chiroptera II Vespertilionidae 2, Molossidae, Nycteridae. AULA, Wiebelsheim, pp 761–814

    Google Scholar 

  73. Terzer S, Wassenaar LI, Araguás-Araguás LJ, Aggarwal PK (2013) Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrol Earth Syst Sci 17:4713–4728

    Google Scholar 

  74. Thomas DW, Fenton MB, Barclay RMR (1979) Social behavior of the little brown bat, Myotis lucifugus. Behav Ecol Sociobiol 6:129–136

    Google Scholar 

  75. Uhrin M (1994) Príspevok k hibernácii podkovára južného (Rhinolophus euryale) a večernice malej (Pipistrellus pipistrellus) v Slovenskom krase. Lynx (Praha) ns 26:17–20

    Google Scholar 

  76. Uhrin M (1995) The finding of a mass winter colony of Barbastella barbastellus and Pipistrellus pipistrellus (Chiroptera, Vespertilionidae) in Slovakia. Myotis 32:131–133

    Google Scholar 

  77. Vachon RW, White JWC, Gutmann E, Welker JM (2007) Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: a sensitivity study. Geophys Res Lett 34:L21707

    Google Scholar 

  78. van Schaik J, Janssen R, Bosch T, Haarsma A-J, Dekker JJA, Kranstauber B (2015) Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE 10:e0130850

    PubMed  PubMed Central  Google Scholar 

  79. Vander Zanden HB, Wunder MB, Hobson KA, van Wilgenburg SL, Wassenaar LI, Welker JM, Bowen GJ (2014) Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. Methods Ecol Evol 5:891–900

    Google Scholar 

  80. Voigt CC, Lehnert LS (2019) Tracking of movements of terrestrial mammals using stable isotopes. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Academic Press, London, pp 117–135

    Google Scholar 

  81. Voigt CC, Lindecke O, Schönborn S, Kramer-Schadt S, Lehmann D (2016) Habitat use of migratory bats killed during autumn at wind turbines. Ecol Appl 26:771–783

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dalibor Uhrovič and Eleonora Ďurišinová for their help in the field and also to Yvonne Klaar and Anja Luckner from the IZW for stable isotope analysis. We are also indebted to Stefan Terzer-Wassmuth from International Atomic Energy Agency in Vienna for providing additional data that were not available at GNIP online repository. Two anonymous reviewers are acknowledged for highly valuable comments and suggestions which helped to improve our work.

Funding

The research was funded by the Scientific Grant Agency VEGA (2/0131/17, 1/0298/19), the Slovak Research and Development Agency (APVV-17-0116) and by the Grant for young researchers and PhD students of P. J. Šafárik University in Košice (vvgs-pf-2017-283).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Kaňuch.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Danilo Russo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nusová, G., Uhrin, M., Voigt, C.C. et al. Tracing the geographic origin of common pipistrelles (Pipistrellus pipistrellus) swarming at a mass hibernaculum. Mamm Biol 100, 601–610 (2020). https://doi.org/10.1007/s42991-020-00057-3

Download citation

Keywords

  • Autumn swarming
  • Bat migration
  • Pipistrellus pipistrellus
  • Stable isotope ratios
  • Swarming behaviour
  • Winter roosts