Skip to main content

Advertisement

Log in

Cosmogenic data about offset uplifted river terraces and erosion rates: implication regarding the central North Anatolian Fault and the Central Pontides

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

River terraces are geomorphological markers recording deformation. Here, we use four strath and fill river terraces along the Kızılırmak River in Turkey to unravel the deformation along the convex arc formed by the central North Anatolian Fault (NAF), a continental transform fault. 10Be, 26Al, 36Cl cosmogenic exposure ages of T3 and T2 strath terraces constrain their formation at 83 ± 15 ka and 67 ± 7 ka, respectively. We evidence frost-cracking during humid cold periods that bought younger carbonate cobbles on both terraces. T1, a younger fill terrace was probably emplaced during the MIS3 (30–40 ka) aggradational period or during the last glacial–interglacial transition. T0, the most recent fill terrace, was incised shortly before the 1668 earthquake based on 14C dating. It records a cumulated 14 ± 2 m offset linked to the 1943 and 1668 earthquakes. T3 shows a maximum offset of ~ 845 m and constrains a 10 mm/year geological slip rate that is lower than Holocene slip rates. It suggests temporal change in slip rates along the NAF. T2 and T3 also evidenced an uplift of 1 mm/year induced by transpressive deformation accommodated close to the NAF. Compared to the 0.28 mm/year obtained to the north, a larger portion of the shortening in the Central Pontides is accommodated close to the driving plate boundary. We also evidenced high cosmogenic-based erosion rates in Pontides during the Holocene, and even higher rates during T3 planation. Erosion rates were combined with present-day relief to infer a first-order minimal shortening of 12–16 km using simple mass balance principles in the Central Pontides. This long-term shortening is larger than the one induced by the Anatolian rotation suggesting a far field effect of the collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akçar N, Yavuz V, Ivy-Ochs S, Reber R, Kubik PW, Zahno C, Schlüchter C (2014) Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quat Geochronol 19:27–41

    Google Scholar 

  • Aktuğ B, Doğru A, Özener H, Peyret M (2015) Slip rates and locking depth variation along central and easternmost segments of North Anatolian Fault. Geophys J Int 202(3):2133–2149

    Google Scholar 

  • Allen JR, Brandt U, Brauer A, Hubberten HW, Huntley B, Keller J, Kraml M, Mackensen A, Mingram J, Negendank, Nowaczyk NR, Oberhansli H, Watts WA, Wulf S, Zolitschka B (1999) Rapid environmental changes in southern Europe during the last glacial period. Nature 400(6746):740

    Google Scholar 

  • Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 26:TC3013. https://doi.org/10.1029/2006TC002030

    Article  Google Scholar 

  • Ambraseys NN (1970) Some characteristic features of the Anatolian fault zone. Tectonophysics 9(2–3):143–165

    Google Scholar 

  • Ambraseys NN, Finkel CF (1988) The Anatolian earthquake of 17 August 1668. In Symposium on historical seismograms and earthquakes (pp 173–180)

  • Anderson RS, Anderson SP (2010) Geomorphology: the mechanics and chemistry of landscapes. Xvi+637pp. Cambridge University Press (ISBN 978 0 521 51978 6)

    Google Scholar 

  • Anderson RS, Anderson SP, Tucker GE (2013) Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone. Earth Surf Proc Land 38(3):299–316

    Google Scholar 

  • Andrieux J, Över S, Poisson A, Bellier O (1995) The North Anatolian Fault Zone: distributed Neogene deformation in its northward convex part. Tectonophysics 243(1–2):135–154

    Google Scholar 

  • Applegate PJ, Urban NM, Keller K, Lowell TV, Laabs BJ, Kelly MA, Alley RB (2012) Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quatern Res 77(2):293–304

    Google Scholar 

  • Armijo R, Lyon-Caen H, Papanastassiou D (1992) East-west extension and Holocene normal-fault scarps in the Hellenic arc. Geology 20(6):491–494

    Google Scholar 

  • Armaş I, Necea D, Miclăuş C (2019) Fluvial terrace formation and controls in the Lower River Danube, SE Romania. Quatern Int 504:5–23

    Google Scholar 

  • Armitage JJ, Duller RA, Whittaker AC, Allen PA (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat Geosci 4(4):231

    Google Scholar 

  • Arnold M et al (2010) The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nuclear Instrum Methods Phys Res Sect B 268(11–12):1954–1959

    Google Scholar 

  • Aydar E, Cubukcu HE, Şen E, Akın L (2013) Central Anatolian Plateau, Turkey: incision and paleoaltimetry recorded from volcanic rocks. Turkish J Earth Sci 22:739–746

    Google Scholar 

  • Badertscher S, Fleitmann D, Cheng H, Edwards RL, Göktürk OM, Zumbühl A et al (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nat Geosci 4(4):236

    Google Scholar 

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3(3):174–195

    Google Scholar 

  • Ballato P, Parra M, Schildgen TF, Dunkl I, Yıldırım C, Özsayın E et al (2018) Multiple exhumation phases in the Central Pontides (N Turkey): new temporal constraints on major geodynamic changes associated with the closure of the Neo-Tethys Ocean. Tectonics 37(6):1831–1857

    Google Scholar 

  • Barka AA (1984) Geology and tectonic evolution of some Neogene-Quaternary basins in the North Anatolian fault zone, special publication. Geol Soc Turk 209–227

  • Barka A (1996) Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bull Seismol Soc Am 86(5):1238–1254

    Google Scholar 

  • Barka AA, Hancock PL (1984) Neotectonic deformation patterns in the convex-northwards arc of the North Anatolian fault zone. Geol Soc Lond Special Public 17(1):763–774

    Google Scholar 

  • Barka AA, Kadinsky-Cade K (1988) Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 7(3):663–684

    Google Scholar 

  • Benedetti L, Finkel R, Papanastassiou D, King G, Armijo R, Ryerson F et al (2002) Post-glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett 29(8):87–91

    Google Scholar 

  • Berndt C, Yıldırım C, Çiner A, Strecker MR, Ertunç G, Sarıkaya MA et al (2018) Quaternary uplift of the northern margin of the Central Anatolian Plateau: new OSL dates of fluvial and delta-terrace deposits of the Kızılırmak River, Black Sea coast, Turkey. Quatern Sci Rev 201:446–469

    Google Scholar 

  • Bierman P, Steig EJ (1996) Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf Proc Land 21(2):125–139

    Google Scholar 

  • Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N et al (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198

    Google Scholar 

  • Bridgland DR (2000) River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quatern Sci Rev 19(13):1293–1303

    Google Scholar 

  • Brown ET, Bourlès DL, Colin F, Raisbeck GM, Yiou F, Desgarceaux S (1995) Evidence for muon-induced production of 10Be in near-surface rocks from the Congo. Geophys Res Lett 22(6):703–706

    Google Scholar 

  • Brown ET, Molnar P, Bourlés DL (2005) Comment on “Slip-rate measurements on the 630 Karakorum Fault may imply secular variations in fault motion.” Science 309:1326b

    Google Scholar 

  • Burbank DW, Anderson RS (2009) Tectonic geomorphology. Wiley

    Google Scholar 

  • Çağatay MN, Öğretmen N, Damcı E, Stockhecke M, Sancar Ü, Eriş KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quatern Sci Rev 104:97–116

    Google Scholar 

  • Çağatay MN, Alpar B, Kirci Elmas E, Caner H, Vardar D (2016) Late quaternary paleoceanographic and paloclimatic evolution of the sea of marmara. In: Özsoy E, Balkis N, Balkis N (eds) The sea of marmara, marine biodiversity, fisheries, conservation and governance. Turkish Marine Research Foundation Publication No: 42, Istanbul, 256–281

  • Cavalié O, Jónsson S (2014) Block-like plate movements in eastern Anatolia observed by InSAR. Geophys Res Lett 41(1):26–31

    Google Scholar 

  • Cavazza C, Federici I, Okay AI, Zattin M (2012) Apatite fissiontrack thermochronology of the Western Pontides (NW Turkey). Geol Mag 149:133–140

    Google Scholar 

  • Chevalier ML, Ryerson FJ, Tapponnier P, Finkel RC, Van Der Woerd J, Haibing L, Qing L (2005) Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science 307(5708):411–414

    Google Scholar 

  • Chmeleff J, von Blanckenburg F, Kossert K, Jakob J (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Inst Methods Phys Res B 268:192–199

    Google Scholar 

  • Chuang RY, Johnson KM (2011) Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39(7):627–630

    Google Scholar 

  • Çiner A, Doğan U, Yıldırım C, Akçar N, Ivy-Ochs S, Alfimov V et al (2015) Quaternary uplift rates of the Central Anatolian Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces. Quatern Sci Rev 107:81–97

    Google Scholar 

  • Çinku MC, Hisarlı ZM, Heller F, Orbay N, Ustaömer T (2011) Middle Eocene paleomagnetic data from the eastern Sakarya Zone and the central Pontides: implications for the tectonic evolution of north central Anatolia. Tectonics. https://doi.org/10.1029/2010TC002705

    Article  Google Scholar 

  • Cukur D, Krastel S, Schmincke HU, Sumita M, Çağatay MN, Meydan AF et al (2014) Seismic stratigraphy of lake Van, eastern Turkey. Quatern Sci Rev 104:63–84

    Google Scholar 

  • Daout S, Barbot S, Peltzer G, Doin M-P, Liu Z, Jolivet R (2016) Constraining the kinematics of metropolitan Los Angeles faultswith a slip-partitioning model. Geophys Res Lett 43:11192–11201. https://doi.org/10.1002/2016GL071061

    Article  Google Scholar 

  • D’Arcy M, Roda-Boluda DC, Whittaker AC (2017) Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California. Quatern Sci Rev 169:288–311

    Google Scholar 

  • Desilets D, Zreda M, Prabu T (2006) Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth Planet Sci Lett 246(3–4):265–276

    Google Scholar 

  • Doğan U (2010) Fluvial response to climate change during and after the Last Glacial Maximum in Central Anatolia. Turkey Quater Int 222(1–2):221–229

    Google Scholar 

  • Doğan U (2011) Climate-controlled river terrace formation in the Kızılırmak Valley, Cappadocia section, Turkey: inferred from Ar–Ar dating of Quaternary basalts and terraces stratigraphy. Geomorphology 126(1–2):66–81

    Google Scholar 

  • Edmond JM, Huh Y (1997) Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In Tectonic uplift and climate change. Springer, Boston, pp 329–351

    Google Scholar 

  • Erturaç MK, Kıyak N (2017) Investigating the fluvial response to late pleistocene climate changes and vertical deformation: Yeşilırmak Terrace Staircases (central north Anatolia). Geol Bull Turkey 60:615–636

    Google Scholar 

  • Erturaç MK, Şahiner E, Zabcı C, Okur H, Polymeris GS, Meriç N, İkiel C (2019) Fluvial response to rising levels of the Black Sea and to climate changes during the Holocene: luminescence geochronology of the Sakarya terraces. The Holocene 29(6):941–952

    Google Scholar 

  • Farber DL, Mériaux AS, Finkel RC (2008) Attenuation length for fast nucleon production of 10Be derived from near-surface production profiles. Earth Planet Sci Lett 274(3–4):295–300

    Google Scholar 

  • Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M, Göktürk OM et al (2009) Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett. https://doi.org/10.1029/2009GL040050

    Article  Google Scholar 

  • Fraser J, Hubert-Ferrari A, Vanneste K, Altinok S, Drab L (2010b) A relict paleoseismic record of seven earthquakes between 2000 BC and 600 AD on the central North Anatolian fault at Elmacik, near Osmancik, Turkey. Bulletin 122(11–12):1830–1845

    Google Scholar 

  • Fraser J, Vanneste K, Hubert-Ferrari A (2010a) Recent behavior of the North Anatolian Fault: Insights from an integrated paleoseismological data set. J Geophys Res. https://doi.org/10.1029/2009JB006982

    Article  Google Scholar 

  • Fuller IC, Macklin MG, Lewin J, Passmore DG, Wintle AG (1998) River response to high-frequency climate oscillations in southern Europe over the past 200 kyear. Geology 26(3):275–278

    Google Scholar 

  • Fuller TK, Perg LA, Willenbring JK, Lepper K (2009) Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology 37(5):467–470

    Google Scholar 

  • Gasperini L, Polonia A, Çağatay MN, Bortoluzzi G, Ferrante V (2011) Geological slip rates along the North Anatolian Fault in the Marmara region. Tectonics. https://doi.org/10.1029/2011TC002906

    Article  Google Scholar 

  • Göktürk OM, Fleitmann D, Badertscher S, Cheng H, Edwards RL, Leuenberger M et al (2011) Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quatern Sci Rev 30(19–20):2433–2445

    Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quatern Sci Rev 20(14):1475–1560

    Google Scholar 

  • Granger DE, Smith AL (2000) Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nucl Instrum Methods Phys Res Sect B 172(1–4):822–826

    Google Scholar 

  • Granger DE, Kirchner JW, Finkel R (1996) Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J Geol 104(3):249–257

    Google Scholar 

  • Hales TC, Roering JJ (2007) Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. J Geophys Res 112(F2). https://doi.org/10.1029/2006JF000616

  • Hancock GS, Anderson RS (2002) Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geol Soc Am Bull 114(9):1131–1142

    Google Scholar 

  • Herece E, Akay E (2003) Atlas of North Anatolian Fault (NAF)/ Kuzey Anadolu Fayi Atlasi (KAF). General directorate of mineral research and exploration, special publication series-2, Ankara, 61 p+13 appendices as separate maps. ISBN 975659554X.

  • Hetzel R, Niedermann S, Tao M, Kubik PW, Strecker MR (2006) Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. J Geophys Res 111(F3). https://doi.org/10.1029/2005JF000352

  • Hubert-Ferrari A, Armijo R, Meyer B, King GCP, Barka A (2002) Morphology, displacement and slip rates along the North Antolian Fault (Turkey). J Geophys Res. https://doi.org/10.1029/2001JB000393

    Article  Google Scholar 

  • Hubert-Ferrari A, King G, Manighetti I, Armijo R, Meyer B, Tapponnier P (2003) Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process. Geophys J Int 153(1):111–132

    Google Scholar 

  • Hubert-Ferrari A, Avşar U, El Ouahabi M, Lepoint G, Martinez P, Fagel N (2012) Paleoseismic record obtained by coring a sag-pond along the North Anatolian Fault (Turkey). Ann Geophys 55(5):929–953

    Google Scholar 

  • Hussain E, Hooper A, Wright TJ, Walters RJ, Bekaert DP (2016) Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. J Geophys Res 121(12):9000–9019

    Google Scholar 

  • Hussain E, Wright TJ, Walters RJ, Bekaert DP, Lloyd R, Hooper A (2018) Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nat Commun 9(1):1392

    Google Scholar 

  • Jones MD, Roberts CN, Leng MJ (2007) Quantifying climatic change through the last glacial–interglacial transition based on lake isotope palaeohydrology from central Turkey. Quatern Res 67(3):463–473

    Google Scholar 

  • Karakaş Ç, Armijo R, Lacassin R, Suc JP, Melinte-Dobrinescu MC (2018) Crustal strain in the Marmara pull-apart region associated with the propagation process of the North Anatolian Fault. Tectonics 37(5):1507–1523

    Google Scholar 

  • Karasözen E, Özacar AA, Biryol CB, Beck SL (2013) Seismicity, focal mechanisms and active stress field around the central segment of the North Anatolian Fault in Turkey. Geophys J Int 196(1):405–421

    Google Scholar 

  • Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56(9):3583–3587

    Google Scholar 

  • Kondo H, Özaksoy V, Yıldirim C (2010) Slip history of the 1944 Bolu Gerede earthquake rupture along the North Anatolian fault system: Implications for recurrence behavior of multisegment earthquakes. J Geophys Res 115(B4). https://doi.org/10.1029/2009JB006413

  • Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, von Gostomski LC, Kossert K, Maitia M, Poutivtsev M, Remmert A (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Inst Methods Phys Res B. 268:187–191

    Google Scholar 

  • Kozacı O, Dolan JF, Finkel RC, Hartleb RD (2007) Late Holocene slip rate for the North Anatolian Fault, Turkey, from cosmogenic 36Cl geochronology: implications for the constancy of fault loading and strain release rates. Geology 35:867–870. https://doi.org/10.1130/G23187A.1

    Article  Google Scholar 

  • Kozacı Ö, Dolan JF, Finkel RC (2009) A late Holocene slip rate for the central North Anatolian fault, at Tahtaköprü, Turkey, from cosmogenic 10Be geochronology: Implications for fault loading and strain release rates. J Geophys Res 114(B1). https://doi.org/10.1029/2008JB005760

  • Kozacı O, Dolan J, Yonlü O, Hartleb R (2011) Paleoseismologic evidence for the relatively regular recurrence of infrequent, large-magnitude earthquakes on the eastern North Anatolian Fault at Yaylabeli, Turkey. Lithosphere 3:37–54. https://doi.org/10.1130/L118.1

    Article  Google Scholar 

  • Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154(1):8–34

    Google Scholar 

  • Krijgsman W, Tesakov A, Yanina T, Lazarev S, Danukalova G, Van Baak CG et al (2019) Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth Sci Rev 188:1–40

    Google Scholar 

  • Langgut D, Almogi-Labin A, Bar-Matthews M, Weinstein-Evron M (2011) Vegetation and climate changes in the South Eastern Mediterranean during the Last Glacial-Interglacial cycle (86 ka): new marine pollen record. Quatern Sci Rev 30(27–28):3960–3972

    Google Scholar 

  • Le Dortz K, Meyer B, Sébrier M, Nazari H, Braucher R, Fattahi M et al (2009) Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran. Geophys J Int 179(2):700–710

    Google Scholar 

  • Lifton N, Sato T, Dunai TJ (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160

    Google Scholar 

  • Litt T, Pickarski N, Heumann G, Stockhecke M, Tzedakis PC (2014) A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quatern Sci Rev 104:30–41

    Google Scholar 

  • Macklin MG, Fuller IC, Lewin J, Maas GS, Passmore DG, Rose J et al (2002) Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quatern Sci Rev 21(14–15):1633–1641

    Google Scholar 

  • Makris J, Stobbe C (1984) Physical properties and state of the crust and upper mantle of the Eastern Mediterranean Sea deduced from geophysical data. Mar Geol 55(3–4):347–363

    Google Scholar 

  • Martin LCP, Blard PH, Balco G, Lavé J, Delunel R, Lifton N, Laurent V (2017) The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat Geochronol 38:25–49

    Google Scholar 

  • Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99(1–4):353–368

    Google Scholar 

  • McClain KP, Yıldırım C, Çiner A, Şahin S, Sarıkaya MA, Özcan O, Kıyak NG, Öztürk T (2020) Quaternary rock uplift rates and their implications for the western flank of the North Anatolian Fault restraining bend; inferences from fluvial terrace ages. Tectonics 39:e2019TC005993. https://doi.org/10.1029/2019TC005993

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astron Soc 30(2):109–185

    Google Scholar 

  • Mériaux AS, Tapponnier P, Ryerson FJ, Xiwei X, King G, Van der Woerd J et al (2005) The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. J Geophys Res 110(B4). https://doi.org/10.1029/2004JB003210

  • Meybeck M, Ragu A (1995) River discharges to the oceans: An assessment of suspended solids, major ions and nutrients. UN Environ. Programme, Nairobi, p 245

    Google Scholar 

  • Morewood NC, Roberts GP (2000) The geometry, kinematics and rates of deformation within an en échelon normal fault segment boundary, central Italy. J Struct Geol 22(8):1027–1047

    Google Scholar 

  • Mudd SM, Harel MA, Hurst MD, Grieve SW, Marrero SM (2016) The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. Earth Surf Dyn 4(3):655–674

    Google Scholar 

  • Mudie PJ, Marret F, Aksu AE, Hiscott RN, Gillespie H (2007) Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the last Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quatern Int 167–168:73–90

    Google Scholar 

  • Nishiizumi K (2004) Preparation of 26Al AMS standards. Nucl Instrum Methods Phys Res, Sect B 223:388–392

    Google Scholar 

  • Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B et al (eds) The Mediterranean Basins: tertiary extension within the Alpine Orogen, vol 156. Geological Society, London, pp 475–515 (Special Publication, Oxford, UK)

    Google Scholar 

  • Okay AI, Sunal G, Sherlock S, Kylander-Clark AR, Özcan E (2020) İzmir-Ankara Suture as a Triassic to Cretaceous Plate Boundary—Data From Central Anatolia. Tectonics 39(5):e2019TC005849

    Google Scholar 

  • Ottria G, Pandolfi L, Catanzariti R, Da Prato S, Ellero A, Frassi C et al (2017) Evolution of an early Eocene pull-apart basin in the Central Pontides (Northern Turkey): new insights into the origin of the North Anatolian Shear Zone. Terra Nova 29(6):392–400

    Google Scholar 

  • Over S, Bellier O, Poisson A, Andrieux J, Tutkun Z (1993) Late Cenozoic fault kinematics within basins along the central North Anatolian fault zone (turkey). Comptes Rendus de l’Académie des Sciens Serie II 317(6):827–833

    Google Scholar 

  • Panin N, Popescu I (2007) The northwestern Black Sea: climatic and sea-level changes in the Late Quaternary. In: The Black Sea flood question: changes in coastline, climate, and human settlement. Springer, Dordrecht, pp 387–404

    Google Scholar 

  • Peltzer G, Crampé F, Hensley S, Rosen P (2001) Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology 29(11):975–978

    Google Scholar 

  • Peyret M, Masson F, Yavasoglu H, Ergintav S, Reilinger R (2013) Present-day strain distribution across a segment of the central bend of the North Anatolian Fault Zone from a Persistent-Scatterers InSAR analysis of the ERS and Envisat archives. Geophys J Int 192(3):929–945

    Google Scholar 

  • Piccardi L, Gaudemer Y, Tapponnier P, Boccaletti M (1999) Active oblique extension in the central Apennines (Italy): evidence from the Fucino region. Geophys J Int 139(2):499–530

    Google Scholar 

  • Pickarski N, Kwiecien O, Djamali M, Litt T (2015) Vegetation and environmental changes during the last interglacial in eastern Anatolia (Turkey): a new high-resolution pollen record from Lake Van. Palaeogeogr Palaeoclimatol Palaeoecol 435:145–158

    Google Scholar 

  • Polonia A, Gasperini L, Amorosi A, Bonatti E, Bortoluzzi G, Cagatay N et al (2004) Holocene slip rate of the North Anatolian Fault beneath the Sea of Marmara. Earth Planet Sci Lett 227(3–4):411–426

    Google Scholar 

  • Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10 Be. GSA Today 21(8):4–10

    Google Scholar 

  • Pucci S, De Martini PM, Pantosti D (2008) Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology 97(3–4):538–554

    Google Scholar 

  • Reber R, Akçar N, Yesilyurt S, Yavuz V, Tikhomirov D, Kubik PW, Schlüchter C (2014) Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quatern Sci Rev 101:177–192

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R et al (2006) GPS constraints on continental deformation in the Africa ArabiaEurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B5). https://doi.org/10.1029/2005JB004051

  • Roberts N, Reed JM, Leng MJ, Kuzucuoğlu C, Fontugne M, Bertaux J et al (2001) The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11(6):721–736

    Google Scholar 

  • Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard PH, Bourles D et al (2009) Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochronol 4(6):441–461

    Google Scholar 

  • Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P et al (2011) Calibration of cosmogenic 36 Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38 N, Italy) and Payun Matru (36 S, Argentina). Geochim Cosmochim Acta 75(10):2611–2632

    Google Scholar 

  • Schumilovskikh LS, Fleitmann D, Nowaczyk NR, Behling H, Marret F, Wegwerth A, Arz HW (2014) Orbital and millenial-scale environmental changes between 64 and 25 ka BP recorded in Black Sea sediments. Climate of the Past 10:939–945

    Google Scholar 

  • Şengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75(3–4):181–241

    Google Scholar 

  • Şengör AC, Zabcı C (2019) The north Anatolian fault and the north Anatolian shear zone. In Landscapes and landforms of Turkey. Springer, Cham, pp 481–494

    Google Scholar 

  • Şengör AMC, Tüysüz O, Imren C, Sakınç M, Eyidoğan H, Görür N et al (2005) The North Anatolian fault: A new look. Annu Rev Earth Planet Sci 33:37–112

    Google Scholar 

  • Shumilovskikh LS, Tarasov P, Arz HW, Fleitmann D, Marret F, Nowaczyk N, Plessen B, Schlütz F, Behling H (2012) Vegetation and environmental dynamics in the southern Black Sea region since 18 kyr BP derived from the marine core 22-GC3. Palaeogeogr Palaeocl 337–338:177–193

    Google Scholar 

  • Shumilvskikh LS, Arz H, Fleitmann D, Marret F, Nowaczyk N, Tarasov P, Wegwerth A, Behling H (2013) Vegetation and environmental changes in Northern Anatolia during penultimate deglaciation and Eemian recorded in Black Sea sediments. Quat Res 80:349–360

    Google Scholar 

  • Siame LL, Angelier J, Chen RF, Godard V, Derrieux F, Bourlès DL et al (2011) Erosion rates in an active orogen (NE-Taiwan): a confrontation of cosmogenic measurements with river suspended loads. Quat Geochronol 6(2):246–260

    Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759

    Google Scholar 

  • Streig AR, Weldon RJ, Biasi G, Dawson TE, Gavin DG, Guilderson TP (2020) New insights into paleoseismic age models on the northern San Andreas Fault: charcoal inbuilt ages and updated earthquake correlations. Bull Seismol Soc Am 110(3):1077–1089

    Google Scholar 

  • Sugai T, Awata Y, Anma R, Saka Y (1999) North Anatolian Fault in Turkey. J Geol Soc Jpn 105:V–VI

    Google Scholar 

  • Sunal G, Erturaç MK (2012) Estimation of the pre-North Anatolian Fault Zone pseudo-paleo-topography: a key to determining the cumulative offset of major post-collisional strike-slip faults. Geomorphology 159:125–141

    Google Scholar 

  • Tapponnier P, Ryerson FJ, Van der Woerd J, Mériaux AS, Lasserre C (2001) Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 333(9):483–494

    Google Scholar 

  • Tucker GE, McCoy SW, Whittaker AC, Roberts GP, Lancaster ST, Phillips R (2011) Geomorphic significance of postglacial bedrock scarps on normalfault footwalls. J Geophys Res 116(F1). https://doi.org/10.1029/2010JF001861

  • Vallage A, Klinger Y, Lacassin R, Delorme A, Pierrot-Deseilligny M (2016) Geological structures control on earthquake ruptures: the Mw7. 7, 2013, Balochistan earthquake, Pakistan. Geophys Res Lett 43(19):10–155

    Google Scholar 

  • Valsecchi V, Goni MF, Londeix L (2012) Vegetation dynamics in the Northeastern Mediterranean region during the past 23,000 years: insights from a new pollen record from the Sea of Marmara. Clim Past 8(6):1941–1956

    Google Scholar 

  • Van Der Woerd J, Klinger Y, Sieh K, Tapponnier P, Ryerson FJ, Mériaux AS (2006) Longterm slip rate of the southern San Andreas fault from 10Be26Al surface exposure dating of an offset alluvial fan. J Geophys Res 111(B4). https://doi.org/10.1029/2004JB003559

  • Vanacore EA, Taymaz T, Saygin E (2013) Moho structure of the Anatolian Plate from receiver function analysis. Geophys J Int 193(1):329–337

    Google Scholar 

  • Von Blanckenburg F (2006) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 242(3–4):224–239

    Google Scholar 

  • Wegmann KW, Pazzaglia FJ (2002) Holocene strath terraces, climate change, and active tectonics: the clearwater River basin, Olympic Peninsula, Washington State. Geol Soc Am Bull 114(6):731–744

    Google Scholar 

  • Westaway R, Pringle M, Yurtmen S, Demir T, Bridgland D, Rowbotham G, Maddy D (2004) Pliocene and Quaternary regional uplift in western Turkey: the Gediz River terrace staircase and the volcanism at Kula. Tectonophysics 391(1–4):121–169

    Google Scholar 

  • Wright T, Parsons B, Fielding E (2001) Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys Res Lett 28(10):2117–2120

    Google Scholar 

  • Yavaşoğlu H, Tarı E, Tüysüz O, Çakır Z, Ergintav S (2011) Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. J Geodyn 51(5):339–343

    Google Scholar 

  • Yıldırım C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011) Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: Implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30:TC5005. https://doi.org/10.1029/2010TC002756

    Article  Google Scholar 

  • Yıldırım C, Melnick D, Ballato P, Schildgen TF, Echtler H, Erginal AE et al (2013b) Differential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces. Quatern Sci Rev 81:12–28

    Google Scholar 

  • Yıldırım C, Schildgen TF, Echtler H, Melnick D, Bookhagen B, Çiner A et al (2013a) Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics 32(5):1107–1120

    Google Scholar 

  • Zabci C, Akyüz HS, Karabacak V, Sançar T, Altunel E, Gürsoy H, Tatar O (2011) Palaeoearthquakes on the Kelkit Valley segment of the North Anatolian Fault, Turkey: Implications for the surface rupture of the historical 17 August 1668 Anatolian earthquake. Turkish J Earth Sci 20(4):411–427

    Google Scholar 

  • Zabcı C (2019) Spatio-temporal behaviour of continental transform faults: implications from the late Quaternary slip history of the North Anatolian Fault, Turkey. Can J Earth Sci 56(11):1218–1238

    Google Scholar 

Download references

Acknowledgements

Our field study was greatly enhanced by the organizing assistance of Erhan Altunnel from Osmangazi University, Eskishir, Turkey. The trenches were opened by Jeff Fraser. Many thanks to Sevgi Altinok and Cagil Karakas for help in the field. We acknowledge the European Commission for funding this project as part of the Marie Curie Excellence Grant Project “Understanding the Irregularity of Seismic Cycles: A Case Study in Turkey” (MEXT-CT-2005-025617: Seismic Cycles). We are thankful to an anonymous reviewer as well as to Cengiz Zabcı that significantly contributes to improving the paper by his detailed review. Supplemental information and data would be found below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélia Hubert-Ferrari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubert-Ferrari, A., Drab, L., Van Der Woerd, J. et al. Cosmogenic data about offset uplifted river terraces and erosion rates: implication regarding the central North Anatolian Fault and the Central Pontides. Med. Geosc. Rev. 3, 129–157 (2021). https://doi.org/10.1007/s42990-021-00057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42990-021-00057-6

Keywords

Navigation