Skip to main content

Advertisement

Log in

Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina): insights from 36Cl cosmogenic dating

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

The highest parts of the Dinaric Mountains along the eastern Adriatic coast of the southern Europe, known for their typical Mediterranean karst-dominated landscape and very humid climate, were glaciated during the Late Pleistocene. Palaeo-piedmont type glaciers that originated from Čvrsnica Mountain (2226 m a.s.l.; above sea level) in Bosnia and Herzegovina deposited hummocky, lateral and terminal moraines into the Blidinje Polje. We constrained the timing of the largest recognized glacier extent on Svinjača and Glavice piedmont glaciers by applying the cosmogenic 36Cl surface exposure dating method on twelve boulder samples collected from lateral, terminal and hummocky moraines. Using 40 mm ka–1 bedrock erosion rate due to high precipitation rates, we obtained 36Cl ages of Last Glacial Maximum (LGM; 22.7 ± 3.8 ka) from the hummocky moraines, and Younger Dryas (13.2 ± 1.8 ka) from the lateral moraine in Svinjača area. The amphitheater shaped terminal moraine in Glavice area also yielded a Younger Dryas (13.5 ± 1.8 ka) age within the error margins. Our results provide a new dataset, and present a relevant contribution towards a better understanding of the glacial chronologies of the Dinaric Mountains. Because our boulder ages reflect complex exhumation and denudation histories, future work is needed to better understand these processes and their influence on the cosmogenic exposure dating approach in a karstic landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aario R (1977) Classification and terminology of morainic landforms in Finland. Boreas 6:87–100

    Google Scholar 

  • Adamson KR, Woodward JC, Hughes PD (2014) Glaciers and rivers: pleistocene uncoupling in a Mediterranean mountain karst. Quatern Sci Rev 94:28–43

    Google Scholar 

  • Applegate PJ, Urban NM, Laabs BJC, Keller K, Alley RB (2010) Model Development Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geosci Model Dev 3:293–307

    Google Scholar 

  • Applegate PJ, Urban NM, Keller K, Lowell TV, Laabs BJC, Kelly MA, Alley RB (2012) Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quatarn Res 77:293–304. https://doi.org/10.1016/J.YQRES.2011.12.002

    Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and Glaciation. Rutledge, New York, p 802

    Google Scholar 

  • Benn DI, Owen LA (2002) Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quatern Int 97–98:3–25

    Google Scholar 

  • Bennett MR (1990) The deglaciation of Glen Croulin, Knoydart. Scott J Geol 26:41–46

    Google Scholar 

  • Bennett MR (1994) Morphological evidence as a guide to deglaciation following the Loch Lomond Stadial: a review of research approaches and models. Scott Geogr Mag 110:24–32

    Google Scholar 

  • Bennett MR, Boulton GS (1993) A reinterpretation of Scottish “hummocky moraine” and its significance for the deglaciation of the Scottish Highlands during the Younger Dryas or Loch Lomond Stadial. Geol Mag 130:301–318

    Google Scholar 

  • Bennett MR, Glasser NF (1991) The glacial landforms of Glen Geusachan, Cairngorms: a reinterpretation. Scott Geogr Mag 107:116–123

    Google Scholar 

  • Boone SJ, Eyes N (2001) Geotechnical model for great plains hummocky moraine formed by till deformation below stagnant ice. Geomorphology 38:109–124

    Google Scholar 

  • Bromley GRM, Putnam AE, Rademaker KM, Lowell TV, Schaefer JM, Hall BL et al (2014) Younger Dryas deglaciation of Scotland driven by warming summers. Proc Natl Acad Sci USA 111(17):6215–6219. https://doi.org/10.1073/pnas.1321122111

    Google Scholar 

  • Bromley G, Putnam A, Borns H Jr, Lowell T, Sandford T, Barrell D (2018) Interstadial rise and Younger Dryas demise of Scotland’s last ice fields. Paleoceanogr Paleoclimatol 33:412–429. https://doi.org/10.1002/2018PA003341

    Google Scholar 

  • Buljan R, Zelenika M, Mesec J (2005) Park prirode Blidinje, prikaz geološke građe i stukturno–tektonskih odnosa [Geologic and tectonic settings of the park of nature Blidinje]. In: Čolak I (ed) Prvi međunarodni znanstveni simpozij Blidinje 2005. Građevinski fakultet Sveučilišta u Mostaru, Mostar, pp 11–24

    Google Scholar 

  • Çiner A (2003) Sedimentary facies analysis and depositional environments of the Late Quaternary moraines in Geyikdağ (Central Taurus Mountains). Geol Bull Turkey 46(1):35–54 (in Turkish)

    Google Scholar 

  • Çiner A, Deynoux M, Çörekçioğlu E (1999) Hummocky moraines in the Namaras and Susam valleys, Central Taurids, SW Turkey. Quatern Sci Rev 18(4–5):659–669

    Google Scholar 

  • Çiner A, Sarıkaya MA, Yıldırım C (2015) Late Pleistocene piedmont glaciations in the Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quatern Sci Rev 116:44–56. https://doi.org/10.1016/j.quascirev.2015.03.017

    Google Scholar 

  • Çiner A, Sarıkaya MA, Yıldırım C (2017) Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: Moraines vs. rock glaciers. Quat Geochronol 42:76–88. https://doi.org/10.1016/J.QUAGEO.2017.07.003

    Google Scholar 

  • Clapperton CM, Sugden DE (1977) The late Devensian glaciation of North East Scotland. In: Gray JM, Lowe JJ (eds) Studies in the Scottish Lateglacial Environment. Pergamon, Oxford, pp 1–4

    Google Scholar 

  • Cvijić J (1899) Glacijalne i morfološke studije o planinama Bosne, Hercegovine i Crne Gore (Glacial and Morphological Studies about Mountains of Bosnia, Herzegovina and Montenegro). Srpska kraljevska Akademija, Beograd, p 57

    Google Scholar 

  • Cvijić J (1900) Karsna polja zapadne Bosne i Hercegovine (Die Karstpoljen in Westbosnien und in Herzegowina). Glas Srpske Kraljevske Akademije Nauka 59(1):59–182

    Google Scholar 

  • D’Arcy M, Schildgen TF, Strecker MR, Wittmann H, Duesing W, Mey J, Tofelde S, Weissmann P, Alonso RN (2019) Timing of past glaciation at the Sierra de Aconquija, northwestern Argentina, and throughout the Central Andes. Quatern Sci Rev 204:37–57

    Google Scholar 

  • Davis R, Schaeffer OA (1955) Chlorine-36 in nature. Ann N Y Acad Sci 62:107–121

    Google Scholar 

  • Davis PT, Bierman PR, Marsella KA, Caffee MW, Southon JR (1999) Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion. Ann Glaciol 28:181–188. https://doi.org/10.3189/172756499781821805

    Google Scholar 

  • Desilets D, Zreda M, Almasi PF, Elmore D (2006) Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation. Chem Geol 233:185–195. https://doi.org/10.1016/J.CHEMGEO.2006.03.001

    Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quatern Sci Rev 78:188–208. https://doi.org/10.1016/J.QUASCIREV.2013.07.025

    Google Scholar 

  • Dunai T (2010) Cosmogenic nuclides principles, concepts and applications in the earth surface sciences. Cambridge Academic Press, Cambridge

    Google Scholar 

  • Eyles N (1983) Modern Icelandic glaciers as depositional models for hummocky moraines in the Scottish Highlands. In: Evenson EB, Schlüchter C, Rabassa J (eds) Tills and related deposits. Balkema, Rotterdam, pp 47–60

    Google Scholar 

  • Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 576

    Google Scholar 

  • Gachev E, Stoyanov K, Gikov A (2016) Small glaciers on the Balkan Peninsula: state and changes in the last several years. Quat Int 415:33–54. https://doi.org/10.1016/J.QUAINT.2015.10.042

    Google Scholar 

  • Gams I (1978) The polje: the problem of definition: with special regard to the Dinaric karst. Z Geomorphol 22(2):170–181

    Google Scholar 

  • Geoportal Web Preglednik (2016) In: F.u.z.g.i.i.-p. poslove (Editor). Federalna Uprava za Geodetske i Imovinsko-Pravne Poslove, Sarajevo

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quatern Sci Rev 20:1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2

    Google Scholar 

  • Gravenor CP, Kupsch WO (1959) Ice-disintegration features in Western Canada. J Geol 67:48–64

    Google Scholar 

  • Gromig R, Mechernich S, Ribolini A, Wagner B, Zanchetta G, Isola I, Bini M, Dunai TJ (2018) Evidence for a Younger Dryas deglaciation in the Galičica Mountains (FYROM) from cosmogenic 36Cl. Quatern Int 464:352–363. https://doi.org/10.1016/j.quaint.2017.07.013

    Google Scholar 

  • Grund A (1902) Neue Eiszeitspuren aus Bosnien und der Hercegovina. Globus 81:149–150

    Google Scholar 

  • Grund A (1910) Beiträge zur Morphologie des Dinarischen Gebirges. In: Grund A (ed) Geographische Abhandlungen. B. G. Teubner, Berlin, p 230

    Google Scholar 

  • Hallet B, Putkonen J (1994) Surface dating of dynamic landforms: young boulders on aging moraines. Science 265(5174):937–940. https://doi.org/10.1126/science.265.5174.937

    Google Scholar 

  • Heisinger B, Lal D, Jull AJT, Kubik P, Ivy-Ochs S, Knie K, Nolte E (2002) Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet Sci Lett 200:357–369. https://doi.org/10.1016/S0012-821X(02)00641-6

    Google Scholar 

  • Heyman J, Stroeven AP, Harbor JM, Caffee MW (2011) Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet Sci Lett 302:71–80. https://doi.org/10.1016/J.EPSL.2010.11.040

    Google Scholar 

  • Hodgson DM (1982) Hummocky and fluted moraines in parts of northwest Scotland. Ph.D. Thesis, University of Edinburgh

  • Hughes PD (2004) Quaternary glaciation in the Pindus Mountains, Northwest Greece. Ph.D. Thesis, University of Cambridge, p 341

  • Hughes PD, Woodward JC (2017) Quaternary glaciation in the Mediterranean mountains: a new synthesis. Geol Soc Lond Spec Publ 433:1–23. https://doi.org/10.1144/SP433.14

    Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL, Macklin MG, Gilmour MA, Smith GR (2006) The glacial history of the Pindus Mountains, Greece. J Geol 114:413–434. https://doi.org/10.1086/504177

    Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2007) Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology 88(3):242–253

    Google Scholar 

  • Hughes PD, Woodward JC, van Calsteren PC, Thomas LE, Adamson KR (2010) Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quatern Sci Rev 29:3690–3708. https://doi.org/10.1016/j.quascirev.2010.06.032

    Google Scholar 

  • Hughes PD, Woodward JC, van Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quatern Sci Rev 30:3393–3412. https://doi.org/10.1016/j.quascirev.2011.08.016

    Google Scholar 

  • Hughes P, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global “Last Glacial Maximum” (LGM). Earth Sci Rev 125:171–198

    Google Scholar 

  • Hughes PD, Fink D, Rodés Á, Fenton CR, Fujioka T (2018) 10Be and 36Cl exposure ages and palaeoclimatic significance of glaciations in the High Atlas, Morocco. Quatern Sci Rev 180:193–213

    Google Scholar 

  • Ivy-Ochs S, Schaller M (2009) Examining processes and rates of landscape change with cosmogenic radionuclides. Radioact Environ 6(16):231–294. https://doi.org/10.1016/S1569-4860(09)01606-4

    Google Scholar 

  • Ivy-Ochs S, Synal H-A, Roth C, Schaller M (2004) Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 223–224:623–627. https://doi.org/10.1016/J.NIMB.2004.04.115

    Google Scholar 

  • Kapos V, Rhind J, Edwards M, Price M, Ravilious C (2000) Developing a map of the world’s mountain forests. In: Price M, Butt N (eds) Forests in sustainable mountain development: a report for 2000. CAB International, Wallingford, pp 4–9. https://doi.org/10.1007/1-4020-3508-X_52

    Google Scholar 

  • Knudsen CG, Larsen E, Sejrup HP, Stalsberg K (2006) Hummocky moraine landscape on Jæren, SW Norway—implications for glacier dynamics during the last deglaciation. Geomorphology 77:153–168

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Google Scholar 

  • Krklec K, Domínguez-Villar D, Perica D (2015) Depositional environments and diagenesis of a carbonate till from a Quaternary paleoglacier sequence in the Southern Velebit Mountain (Croatia). Palaeogeogr Palaeoclimatol Palaeoecol 436:188–198. https://doi.org/10.1016/J.PALAEO.2015.07.004

    Google Scholar 

  • Kuhlemann J, Milivojević M, Krumrei I, Kubik PW (2009) Last glaciation of the Šara Range (Balkan peninsula): increasing dryness from the LGM to the Holocene. Austr J Earth Sci 102(1):146–158

    Google Scholar 

  • Kuhlemann J, Gachev E, Gikov A, Nedkov S, Krumrei I, Kubik P (2013) Glaciation in the Rila mountains (Bulgaria) during the Last Glacial Maximum. Quatern Int 293:51–62. https://doi.org/10.1016/J.QUAINT.2012.06.027

    Google Scholar 

  • Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along the Italian coast during the Holocene and projections for the future. Q Int 232:250–257. https://doi.org/10.1016/j.quaint.2010.04.026

    Google Scholar 

  • Levenson Y, Ryb U, Emmanuel S (2017) Comparison of field and laboratory weathering rates in carbonate rocks from an Eastern Mediterranean drainage basin. Earth Planet Sci Lett 465:176–183. https://doi.org/10.1016/j.epsl.2017.02.031

    Google Scholar 

  • Liedtke VH (1962) Vergletscherungsspuren und Periglazialerscheinungen am Südhang des Lovcen östlich von Kotor. Eiszeit Gegenw 13:15–18

    Google Scholar 

  • Lifton N, Sato T, Dunai T Journal (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160. https://doi.org/10.1016/J.EPSL.2013.10.052

    Google Scholar 

  • Lukas S (2011) Ice-cored moraines. In: Singh V, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Heidelberg, pp 616–619

    Google Scholar 

  • Lüthgens C, Böse M, Preusser F (2011) Age of the Pomerian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40:598–615

    Google Scholar 

  • Marjanac L (2012) Pleistocene glacial and periglacial sediments of Kvarner, northern Dalmatia and southern Velebit Mt. e evidence of Dinaric glaciation. PhD thesis. University of Zagreb

  • Marjanac L, Marjanac T (2004) Glacial history of the Croatian Adriatic and coastal Dinarides. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology. Part I: Europe. Elsevier, Amsterdam, pp 19–26

    Google Scholar 

  • Marjanac L, Marjanac T, Mogut K (2001) Dolina Gumance u doba Pleistocena. Zb Dru stva za Povj Klana 6:321–330

    Google Scholar 

  • Marković M (1973) Geomorfološka evolucija i neotektonika Orjena. Rudarsko Geološki Fakultet, Beograd, p 269

    Google Scholar 

  • Marrero SM, Phillips FM, Borchers B, Lifton N, Aumer R, Balco G (2016a) Cosmogenic nuclide systematics and the CRONUScalc program. Quat Geochronol 31:160–187. https://doi.org/10.1016/j.quageo.2015.09.005

    Google Scholar 

  • Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016b) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219. https://doi.org/10.1016/j.quageo.2015.10.002

    Google Scholar 

  • May J-H, Zech J, Zech R, Preusser F, Argollo J, Kubik PW, Veit H (2011) Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach. Quat Res 76:106–118

    Google Scholar 

  • Milićević M, Prskalo M (2014) Geomorfološki tragovi pleistocenske glacijacije na Čvrsnici [Geomorphological Traces of Pleistocene Glaciation of the Čvrsnica Massif]. e–Zbornik Elektronički Zbornik Radova Građevinskog Fakulteta:87–94

  • Milivojević M (2007) Glacijalni reljef na Volujaku sa Bio cem i Magli cem. In: Posebna Izdanja, Srpska Akademija Nauka i Umetnosti, Geografski Institut “Jovan Cviji c”, Knj. 68. Geografski institut “Jovan Cviji c” SANU, Beograd, p 130

  • Milivojević M, Menković L, Calić J (2008) Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quat Int 190:112–122. https://doi.org/10.1016/j.quaint.2008.04.006

    Google Scholar 

  • Milojević BŽ (1935) Čvrsnica. Hrvatski Geografski Glasnik 6(1):17–23

    Google Scholar 

  • Oliva M, Ruiz-Fernández J (2018) Late Quaternary environmental dynamics in Lenin Peak area (Pamir Mountains, Kyrgyzstan). Sci Total Environ 645:603–614

    Google Scholar 

  • Owen LA, Gualtieri L, Finkel RC, Caffee MW, Benn DI, Sharma MC (2001) Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. J Quat Sci 16:555–563. https://doi.org/10.1002/jqs.621

    Google Scholar 

  • Palacios D, Gómez-Ortiz A, Alcalá-Reygosa J, Andrés N, Oliva M, Tanarro LM, Salvador-Franch F, Schimmelpfennig I, Léanni L, Team ASTER (2019) The challenging application of cosmogenic dating methods in residual glacial landforms: the case of Sierra Nevada (Spain). Geomorphology 325:103–118

    Google Scholar 

  • Pavlopoulos K, Leontaritis A, Athanassas CD, Petrakou C, Vandarakis D, Nikolakopoulos K, Stamatopoulos L, Theodorakopoulou K (2018) Last glacial geomorphologic records in Mt Chelmos, North Peloponnesus, Greece. J Mt Sci 15(5):948–965

    Google Scholar 

  • Penck A (1900) Die Eiszeitspuren auf der Balkanhalbinsel. Globus 78:133–178

    Google Scholar 

  • Petrović AS (2014) A Reconstruction of the Pleistocene Glacial Maximum in the Žijovo Range (Prokletije Mountains, Montenegro). Acta Geogr Slov 54:256–269. https://doi.org/10.3986/AGS54202

    Google Scholar 

  • Pope RJ, Hughes PD, Skourtsos E (2015) Glacial history of Mt Chelmos, Peloponnesus, Greece. Geol Soc Lond Spec Publ 433:211–236. https://doi.org/10.1144/SP433.11

    Google Scholar 

  • Putkonen J, Swanson T (2003) Accuracy of cosmogenic ages for moraines. Quatern Res 59:255–261. https://doi.org/10.1016/S0033-5894(03)00006-1

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

    Google Scholar 

  • Ribolini A, Bini M, Isola I, Spagnolo M, Zanchetta G, Pellitero R, Mechernich S, Gromig R, Dunai T, Wagner B, Milevski I (2018) An oldest Dryas glacier expansion on Mount Pelister (Former Yugoslavian Republic of Macedonia) according to 10Be cosmogenic dating. J Geol Soc Lond 1:4. https://doi.org/10.1144/jgs2017-038

    Google Scholar 

  • Riđanović J (1966) Orjen—La montagne dinarique. Radovi geografskog instituta sveučilišta u Zagrebu. Geografski Institut, Prirodoslovno-Matematički Fakultet, Zagreb

    Google Scholar 

  • Roglić J (1959) Prilog poznavanju glacijacije i evolucije reljefa planina oko srednje Neretve (Supplement to the Knowledge of Glaciation and Relief Evolution of the Mountains Near Middle Neretva River). Geografski Glasnik 21(1):9–34

    Google Scholar 

  • Ryb U, Matmon A, Erel Y, Haviv I, Benedetti L, Hidy AJ (2014) Styles and rates of long–term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient. Earth Planet Sci Lett 406:142–152. https://doi.org/10.1016/J.EPSL.2014.09.008

    Google Scholar 

  • Sarıkaya MA (2009) Late Quaternary glaciation and paleoclimate of Turkey inferred from cosmogenic 36Cl dating of moraines and glacier modeling. PhD Thesis, University of Arizona, USA

  • Sarıkaya MA, Çiner A (2017) The late Quaternary glaciation in the Eastern Mediterranean. In: Hughes P, Woodward J (eds) Quaternary glaciation in the mediterranean mountains, vol 433. Geological Society of London Special Publication, London, p 289–305

    Google Scholar 

  • Sarıkaya MA, Çiner A, Haybat H, Zreda M (2014) An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quatern Sci Rev 88:96–109. https://doi.org/10.1016/J.QUASCIREV.2014.01.016

    Google Scholar 

  • Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard P-H, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). Geochim Cosmochim Acta 75:2611–2632. https://doi.org/10.1016/j.gca.2011.02.013

    Google Scholar 

  • Schlagenhauf A, Gaudemer Y, Benedetti L, Manighetti I, Palumbo L, Schimmelpfennig I, Finkel R, Pou K (2010) Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: a reappraisal of methodology and interpretations. Geophys J Int 182:36–72. https://doi.org/10.1111/j.1365-246X.2010.04622.x

    Google Scholar 

  • Sharp MJ (1985) Sedimentation and stratigraphy at Eyjabakkajøkull: an icelandic surging glacier. Quatern Res 24:268–284

    Google Scholar 

  • Sissons JB (1967) The evolution of Scotland’s scenery. Oliver and Boyd, Edinburgh. Younger Dryas or Loch Lomond Stadial. Geol Mag 130:301–318

    Google Scholar 

  • Sissons JB (1979) The Loch Lomond Stadial in the British Isles. Nature 280:199–203

    Google Scholar 

  • Smart CC (2004) Glacierized and glaciated karst. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 804–809

    Google Scholar 

  • Smith GW, Nance RD, Genes AN (1997) Quaternary glacial history of Mount Olympus. Geol Soc Am Bull 109:809–824

    Google Scholar 

  • Sofilj J, Živanović M (1979) Osnovna geološka karta SFRJ. K 33–12, Prozor [Basic Geological Map of SFRJ. K 33–12, Prozor]. Savezni Geološki Zavod, Beograd

  • Stepišnik U, Ferk M, Kodelja B, Medenjak G, Mihevc A, Natek K, Žebre M (2009a) Glaciokarst of western Orjen. Cave Karst Sci 36:21–28

    Google Scholar 

  • Stepišnik U, Ferk M, Kodelja B, Medenjak G, Mihevc A, Natek K, Žebre M (2009b) Glaciokarst of western Orjen, Montenegro. Cave Karst Sci Trans Br Cave Res Assoc 36(1):21–28

    Google Scholar 

  • Stepišnik U, Grlj A, Radoš D, Žebre M (2016) Geomorphology of Blidinje, Dinaric Alps (Bosnia and Herzegovina). J Maps 12(S1):163–171. https://doi.org/10.1080/17445647.2016.1187209

    Google Scholar 

  • Stone JO, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692. https://doi.org/10.1016/0016-7037(95)00429-7

    Google Scholar 

  • Styllas MN, Schimmelpfennig I, Benedetti L, Ghilardi M, Aumaître G, Bourlès D, Keddadouche K (2018) Late-glacial and Holocene history of the northeast Mediterranean mountain glaciers—new insights from in situ-produced 36Cl-based cosmic ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece. Quatern Sci Rev 193:244–265. https://doi.org/10.1016/j.quascirev.2018.06.020

    Google Scholar 

  • Thomas F, Godard V, Bellier O, Benedetti L, Ollivier V, Rizza M, Guillou V, Hollender F, Aumaître G, Bourlès DL, Keddadouche K (2018) Limited influence of climatic gradients on the denudation of a Mediterranean carbonate landscape. Geomorphology 316:44–58. https://doi.org/10.1016/J.GEOMORPH.2018.04.014

    Google Scholar 

  • Vojnogeografski Institut (1969) Atlas klime Socijalističke Federativne Republike Jugoslavije

  • von Sawicki L (1911) Die eiszeitliche Vergletscherung des Orjen in Süddalmatien. Z Gletscherkunde 5:339–355

    Google Scholar 

  • Woodward JC, Macklin MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology. Part I: Europe. Elsevier, Amsterdam, pp 155–173

    Google Scholar 

  • Žebre M, Stepišnik U (2015a) Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps. https://doi.org/10.1080/17445647.2015.1095133

    Google Scholar 

  • Žebre M, Stepišnik U (2015b) Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surf Process Landf 40:1493–1505. https://doi.org/10.1002/esp.3731

    Google Scholar 

  • Žebre M, Stepišnik U, Colucci RR, Forte E, Monegato G (2016) Evolution of a karst polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps). Geomorphology 257:143–154

    Google Scholar 

  • Žebre M, Sarıkaya MA, Stepišnik U, Yıldırım C, Çiner A (2019) First 36Cl cosmogenic moraine geochronology of the Dinaric mountain karst: velež and Crvanj Mountains of Bosnia and Herzegovina. Quatern Sci Rev 208:54–75

    Google Scholar 

  • Zech R, Glaser B, Sosin P, Kubik PW, Zech W (2005) Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth Planet Sci Lett 237:453–461

    Google Scholar 

  • Zech J, Terrizzano C, García-Morabito E, Veit H, Zech R (2017) Timing and extent of late pleistocene glaciation in the arid central Andes of Argentina and Chile (22–41_S). Geogr Res Lett 43:697–718

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Istanbul Technical University Research Fund (project MGA-2017-40540), by the Scientific and Technological Research Council of Turkey (TÜBİTAK-118Y052), by the Slovenian Research Agency (research core funding no. P1-0011, P6-0229(A) and P1-0025), and by the Department of Geography, University of Ljubljana. Nevesinje climate data are provided courtesy of the Federal Hydrometeorological Institute, Sarajevo, Bosnia and Herzegovina. We are very thankful to Klaus Wilcken at the ANSTO Lab in Australia for AMS measurements. We also acknowledge laboratory assistance of Oğuzhan Köse (Istanbul Technical University). We thank reviewers Marc Oliva and Philip Hughes, and editor Catherine Kuzucuoğlu for their helpful suggestions that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Çiner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1: Supplementary laboratory and AMS data. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiner, A., Stepišnik, U., Sarıkaya, M.A. et al. Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina): insights from 36Cl cosmogenic dating. Med. Geosc. Rev. 1, 25–43 (2019). https://doi.org/10.1007/s42990-019-0003-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42990-019-0003-4

Keywords

Navigation