Cazenave, T.: Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, vol. 10. American Mathematics Society, New York (2003)
Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equationin $H^s$. Nonlinear Anal. 14, 807–836 (1990)
MathSciNet
Article
Google Scholar
DeBouard, A.: Analytic solution to non elliptic nonlinear Schrödinger equations. J. Differ. Equ. 104, 196–213 (1993)
Article
Google Scholar
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I: the Cauchy problem. J. Funct. Anal. 32, 1–32 (1979)
Article
Google Scholar
Ginibre, J., Ozawa, T., Velo, G.: On the existence of the wave operators for a class nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Phys. Théor. 60, 211–239 (1994)
MathSciNet
MATH
Google Scholar
Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)
MathSciNet
Article
Google Scholar
Hayashi, N., Kato, K.: Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations. Commun. Math. Phys. 184, 273–300 (1997)
Article
Google Scholar
Hayashi, N., Naumkin, P.I.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)
Article
Google Scholar
Hayashi, N., Ozawa, T.: Scattering theory in the weighted $L^2(\mathbb{R}^n)$ space for some Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 48, 17–37 (1988)
MathSciNet
MATH
Google Scholar
Hayashi, N., Ozawa, T.: Smoothing effect for some Schrödinger eqations. J. Funct. Anal. 85, 307–348 (1989)
MathSciNet
Article
Google Scholar
Hayashi, N., Saitoh, S.: Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. H. Poincaré Phys. Théor. 52, 163–173 (1990)
MathSciNet
MATH
Google Scholar
Hayashi, N., Nakamitsu, K., Tsutsumi, M.: On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension. Math. Z. 192, 637–650 (1986)
MathSciNet
Article
Google Scholar
Hoshino, G.: Space-time analytic smoothing effect for a system of nonlinear Schrödinger equations with non pseudo-conformally invariant interactions. Commun. Partial Differ. Equ. 42, 802–819 (2017)
Article
Google Scholar
Hoshino, G.: Space-time Gevrey smoothing effect for the dissipative nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 27(32) (2020)
Hoshino, G.: Space-time analytic smoothing effect for the nonlinear Schrödinger equations with nonlinearity of exponential type (submitted)
Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödinger equation in two space dimensions. Osaka J. Math. 51, 609–618 (2014)
MathSciNet
MATH
Google Scholar
Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödinger equation with quintic nonlinearity. J. Math. Anal. Appl. 419, 285–297 (2014)
MathSciNet
Article
Google Scholar
Hoshino, G., Ozawa, T.: Space-time analytic smoothing effect for the pseudo-conformally invariant Schrödinger equations. Nonlinear Differ. Equ. Appl. 23(3) (2016)
Kato, T.: On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)
MathSciNet
Article
Google Scholar
Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier Stokes equations. Commun. Pure App. Math. 41, 891–907 (1988)
MathSciNet
Article
Google Scholar
Keel, M., Tao, T.: Endpoint Strichartz inequalities. Am. J. Math. 120, 955–980 (1998)
Article
Google Scholar
Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Springer, New York (2015)
Book
Google Scholar
Nakamitsu, K.: Analytic finite energy solutions of the nonlinear Schrödinger equation. Commun. Math. Phys. 260, 117–130 (2005)
MathSciNet
Article
Google Scholar
Nakamura, M., Ozawa, T.: Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces. Rev. Math. Phys. 9, 397–410 (1997)
MathSciNet
Article
Google Scholar
Ozawa, T., Yamauchi, K.: Analytic smoothing effect for global solutions to nonlinear Schrödinger equation. J. Math. Anal. Appl. 364, 492–497 (2010)
MathSciNet
Article
Google Scholar
Tsutsumi, Y.: $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. 30, 115–125 (1987)
MATH
Google Scholar
Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)
Article
Google Scholar