Skip to main content
Log in

A remark on the uniqueness of Kozono–Nakao’s mild \(L^3\)-solutions on the whole time axis to the Navier–Stokes equations in unbounded domains

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the uniqueness of Kozono–Nakao’s bounded continuous \(L^{3}\)-solutions on the whole time axis to the Navier–Stokes equations in 3-dimensional unbounded domains. When \(\Omega \) is an unbounded domain, it is known that a small solution in \(BC({\mathbb {R}};L^{3,\infty })\) is unique within the class of solutions which have sufficiently small \(L^{\infty }({\mathbb {R}}; L^{3,\infty })\)-norm. There is another type of uniqueness theorem. Farwig, Nakatsuka and the author (2015) showed that if two solutions exist for the same force f, one is small and if other one satisfies the precompact range condition (PRC), then the two solutions coincide. Since time-periodic solutions satisfy (PRC), this uniqueness theorem is applicable to time-periodic solutions. On the other hand, there exist many solutions which do not satisfy (PRC). In this paper, by assuming the boundedness of the \(L^r\)-norm for some \(1<r<3\), we show a modified version of the above-mentioned uniqueness theorem without (PRC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces, An introduction. Springer, Berlin, Heidelberg, New York (1976)

    Book  Google Scholar 

  2. Borchers, W., Miyakawa, T.: \(L^2\) decay for the Navier–Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  Google Scholar 

  3. Borchers, W., Miyakawa, T.: Algebraic \(L^2\) decay for Navier–Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

    Article  MathSciNet  Google Scholar 

  4. Borchers, W., Sohr, H.: On the semigroup of the Stokes operator for exterior domains in \(L^q\)-spaces. Math. Z. 196, 415–425 (1987)

    Article  MathSciNet  Google Scholar 

  5. Cannone, M., Planchon, F.: On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations. Rev. Mat. Iberoam. 16, 1–16 (2000)

    Article  MathSciNet  Google Scholar 

  6. Crispo, F., Maremonti, P.: Navier–Stokes equations in aperture domains: global existence with bounded flux and time-periodic solutions. Math. Methods Appl. Sci. 31, 249–277 (2008)

    Article  MathSciNet  Google Scholar 

  7. Crispo, F., Maremonti, P.: On the uniqueness of a suitable weak solution to the Navier–Stokes Cauchy problem. Partial Differ. Equations Appl. 2, 35 (2021). https://doi.org/10.1007/s42985-021-00073-z

    Article  MATH  Google Scholar 

  8. Farwig, R., Nakatsuka, T., Taniuchi, Y.: Uniqueness of solutions on the whole time axis to the Navier–Stokes equations in unbounded domains. Commun. Partial Differ. Equations 40, 1884–1904 (2015)

    Article  MathSciNet  Google Scholar 

  9. Farwig, R., Nakatsuka, T., Taniuchi, Y.: Existence of solutions on the whole time axis to the Navier-Stokes equations with precompact range in \(L^3\). Arch. Math. 104, 539–550 (2015)

    Article  MathSciNet  Google Scholar 

  10. Farwig, R., Okabe, T.: Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions. Ann. Univ. Ferrara Sez. VII Sci. Mat. 56, 249–281 (2010)

    Article  MathSciNet  Google Scholar 

  11. Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Jpn. 46, 607–643 (1994)

    Article  MathSciNet  Google Scholar 

  12. Farwig, R., Sohr, H.: On the Stokes and Navier–Stokes system for domains with noncompact boundary in \(L^q\)-spaces. Math. Nachr. 170, 53–77 (1994)

    Article  MathSciNet  Google Scholar 

  13. Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in \(L^q\)-spaces. Analysis 16, 1–26 (1996)

    Article  MathSciNet  Google Scholar 

  14. Farwig, R., Taniuchi, Y.: Uniqueness of almost periodic-in-time solutions to Navier–Stokes equations in unbounded domains. J. Evol. Equations 11, 485–508 (2011)

    Article  MathSciNet  Google Scholar 

  15. Farwig, R., Taniuchi, Y.: Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier–Stokes equations in unbounded domains. Discrete Contin. Dyn. Syst. Ser. S 6, 1215–1224 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Foias, C.: Une remarque sur l’unicite des solutions des equations de Navier-Stokes en dimension \(n\). Bull. Soc. Math. Fr. 89, 1–8 (1961)

  17. Furioli, G., Lemarié-Rieusset, P.-G., Terraneo, E.: Sur l’unicité dans \(L^3({\mathbb{R}}^3)\) des solutions “mild” des équations de Navier–Stokes. C. R. Acad. Sci. Paris Sér. I Math. 325, 1253–1256 (1997)

  18. Galdi, G.P., Sohr, H.: Existence and uniqueness of time-periodic physically reasonable Navier–Stokes flow past a body. Arch. Ration. Mech. Anal. 172, 363–406 (2004)

    Article  MathSciNet  Google Scholar 

  19. Geissert, M., Hieber, M., Nguyen, T. H.: A General Approach to time periodic incompressible viscous fluid flow problems. Arch. Ration. Mech. Anal. 220, 1095–1118 (2016)

  20. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L^r\) spaces. Math. Z. 178, 297–329 (1981)

    Article  MathSciNet  Google Scholar 

  21. Giga, Y., Sohr, H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 103–130 (1989)

  22. Hishida, T.: The nonstationary Stokes and Navier–Stokes flows through an aperture. In: Contributions to Current Challenges in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., pp. 79–123. Birkhäuser, Basel (2004)

  23. Iwashita, H.: \(L_q-L_r\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in \(L_q\) spaces. Math. Ann. 285, 265–288 (1989)

    Article  MathSciNet  Google Scholar 

  24. Kang, K., Miura, H., Tsai, T.-P.: Asymptotics of small exterior Navier–Stokes flows with non-decaying boundary data. Commun. Partial Differ. Equations 37, 1717–1753 (2012)

    Article  MathSciNet  Google Scholar 

  25. Kobayashi, T., Shibata, Y.: On the Oseen equation in the three dimensional exterior domains. Math. Ann. 310, 1–45 (1998)

    Article  MathSciNet  Google Scholar 

  26. Kozono, H., Nakao, M.: Periodic solutions of the Navier–Stokes equations in unbounded domains. Tohoku Math. J. 48, 33–50 (1996)

    Article  MathSciNet  Google Scholar 

  27. Kozono, H., Ogawa, T.: On stability of Navier–Stokes flows in exterior domains. Arch. Ration. Mech. Anal. 128, 1–31 (1994)

    Article  MathSciNet  Google Scholar 

  28. Kozono, H., Yamazaki, M.: Uniqueness criterion of weak solutions to the stationary Navier–Stokes equations in exterior domains. Nonlinear Anal. Ser. A Theory Methods 38, 959–970 (1999)

  29. Kubo, T.: The Stokes and Navier–Stokes equations in an aperture domain. J. Math. Soc. Jpn. 59, 837–859 (2007)

    Article  MathSciNet  Google Scholar 

  30. Kubo, T.: Periodic solutions of the Navier–Stokes equations in a perturbed half-space and an aperture domain. Math. Methods Appl. Sci. 28, 1341–1357 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. In: Dispersive Nonlinear Problems in Mathematical Physics, Quad. Mat., vol. 15, pp. 149–220. Dept. Math., Seconda Univ. Naples, Caserta (2004)

  32. Lions, P.-L., Masmoudi, N.: Uniqueness of mild solutions of the Navier–Stokes system in \(L^N\). Commun. Partial Differ. Equations 26, 2211–2226 (2001)

    Article  Google Scholar 

  33. Maremonti, P.: Existence and stability of time-periodic solutions to the Navier–Stokes equations in the whole space. Nonlinearity 4, 503–529 (1991)

    Article  MathSciNet  Google Scholar 

  34. Maremonti, P.: Some theorems of existence for solutions of the Navier–Stokes equations with slip boundary conditions in half-space. Ric. Mat. 40, 81–135 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Maremonti, P., Padula, M.: Existence, uniqueness, and attainability of periodic solutions of the Navier–Stokes equations in exterior domains. J. Math. Sci. (N. Y.) 93, 719–746 (1999)

    Article  MathSciNet  Google Scholar 

  36. Meyer, Y.: Wavelets, paraproducts, and Navier–Stokes equations. In: Current Developments in Mathematics, 1996 (Cambridge, MA), pp. 105–212. Int. Press, Boston (1997)

  37. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  38. Monniaux, S.: Uniqueness of mild solutions of the Navier–Stokes equation and maximal \(L^p\)-regularity. C. R. Acad. Sci. Paris Sér. I Math. 328, 663–668 (1999)

  39. Nakatsuka, T.: On uniqueness of stationary solutions to the Navier–Stokes equations in exterior domains. Nonlinear Anal. 75, 3457–3464 (2012)

    Article  MathSciNet  Google Scholar 

  40. Nakatsuka, T.: Uniqueness of steady Navier–Stokes flows in exterior domains. Funkcial. Ekvac. 56, 323–337 (2013)

    Article  MathSciNet  Google Scholar 

  41. Okabe, T., Tsutsui, Y.: Time-periodic strong solutions to the incompressible Navier–Stokes equations with external forces of non-divergence form. J. Differ. Equations 263, 8229–8263 (2017)

    Article  MathSciNet  Google Scholar 

  42. Salvi, R.: On the existence of periodic weak solutions on the Navier–Stokes equations in exterior regions with periodically moving boundaries. In: Sequeira, A. (ed.) Navier–Stokes Equations and Related Nonlinear Problems (Funchal, 1994), pp. 63–73. Plenum, New York (1995)

  43. Shibata, Y.: On a stability theorem of the Navier–Stokes equations in a three dimensional exterior domain, Tosio Kato’s method and principle for evolution equations in mathematical physics (Sapporo. Surikaisekikenkyusho Kokyuroku 1234, 146–172 (2001)

  44. Shibata, Y.: On some stability theorems about viscous fluid flow. Quad. Sem. Mat. Brescia 01 (2003)

  45. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equation. Series Adv. Math. Appl. Sci., vol. 11, 1–35. World Scientific, River Edge (1992)

  46. Taniuchi, Y.: On the uniqueness of time-periodic solutions to the Navier–Stokes equations in unbounded domains. Math. Z. 261, 597–615 (2009)

    Article  MathSciNet  Google Scholar 

  47. Ukai, S.: A solution formula for the Stokes equation in \({\mathbb{R}}^n_+\). Commun. Pure Appl. Math. 40, 611–621 (1987)

  48. Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math. Ann. 317, 635–675 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their valuable comments. This work was supported by JSPS KAKENHI Grant Number No.16K05228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Taniuchi.

Additional information

Dedicated to Professor Hideo Kozono on his 60th birthday.

Mathematical Fluid Mechanics and Related Topics: In Honor of Professor Hideo Kozono’s 60th Birthday. This article is part of the topical collection dedicated to Prof. Hideo Kozono on the occasion of his 60th birthday, edited by Kazuhiro Ishige, Tohru Ozawa, Senjo Shimizu, and Yasushi Taniuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniuchi, Y. A remark on the uniqueness of Kozono–Nakao’s mild \(L^3\)-solutions on the whole time axis to the Navier–Stokes equations in unbounded domains. Partial Differ. Equ. Appl. 2, 68 (2021). https://doi.org/10.1007/s42985-021-00121-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00121-8

Keywords

Mathematics Subject Classification

Navigation