Skip to main content
Log in

Finite time blow-up for a nonlinear viscoelastic Petrovsky equation with high initial energy

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the initial boundary value problem for a Petrovsky type equation with a memory term, a linear weak damping and superlinear source. Finite time blow-up results have been obtained for the case in which the initial energy \(E(0)\le M\), where M is a positive constant. By utilizing Levine’s classical concavity method, we give a new blow-up criterion which includes the case of \(E(0)>M\) and derive an explicit upper bound for the blow-up time. By using the Fountain Theorem, we show that the problem with arbitrary positive initial energy always admits weak solutions blowing up in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Messaoudi, S.A.: Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265(2), 296–308 (2002). https://doi.org/10.1006/jmaa.2001.7697

    Article  MathSciNet  MATH  Google Scholar 

  2. Han, X., Wang, M.: Asymptotic behavior for Petrovsky equation with localized damping. Acta Appl. Math. 110(3), 1057–1076 (2010). https://doi.org/10.1007/s10440-009-9493-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system. J. Differ. Equ. 249(6), 1241–1257 (2010). https://doi.org/10.1016/j.jde.2010.05.005

    Article  MATH  Google Scholar 

  4. Li, G., Sun, Y., Liu, W.: Global existence, uniform decay and blow-up of solutions for a system of Petrovsky equations. Nonlinear Anal. 74(4), 1523–1538 (2011). https://doi.org/10.1016/j.na.2010.10.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhou, J.: Lower bounds for blow-up time of two nonlinear wave equations. Appl. Math. Lett. 45, 64–68 (2015). https://doi.org/10.1016/j.aml.2015.01.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Ye, Y.: Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term. Nonlinear Anal. 112, 129–146 (2015). https://doi.org/10.1016/j.na.2014.09.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Ye, Y.: Global existence and blow-up of solutions for a system of Petrovsky equations. Appl. Anal. 96(16), 2869–2890 (2017). https://doi.org/10.1080/00036811.2016.1249862

    Article  MathSciNet  MATH  Google Scholar 

  8. Al-Gharabli, M.M., Messaoudi, S.A.: The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term. J. Math. Anal. Appl. 454(2), 1114–1128 (2017). https://doi.org/10.1016/j.jmaa.2017.05.030

    Article  MathSciNet  MATH  Google Scholar 

  9. Mustafa, M.I., Kafini, M.: Decay rates for memory-type plate system with delay and source term. Math. Methods Appl. Sci. 40(4), 883–895 (2017). https://doi.org/10.1002/mma.4015

    Article  MathSciNet  MATH  Google Scholar 

  10. Narciso, V.: Attractors for a plate equation with nonlocal nonlinearities. Math. Methods Appl. Sci. 40(11), 3937–3954 (2017). https://doi.org/10.1002/mma.4275

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Zhou, Y.: Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal. 70(9), 3203–3208 (2009). https://doi.org/10.1016/j.na.2008.04.024

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, F., Gao, Q.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016). https://doi.org/10.1016/j.amc.2015.11.018

    Article  MathSciNet  MATH  Google Scholar 

  13. Gazzola, F., Squassina, M.: Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. Henri Poincare-A. N. 23(2), 185–207 (2006). https://doi.org/10.1016/j.anihpc.2005.02.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Y.: A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy. Appl. Math. Lett. 22(9), 1394–1400 (2009). https://doi.org/10.1016/j.aml.2009.01.052

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, R., Mu, C., Zhou, S.: A blow-up result for Kirchhoff-type equations with high energy. Math. Methods Appl. Sci. 34(4), 479–486 (2011). https://doi.org/10.1002/mma.1374

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Wang, Y.: On the initial-boundary problem for fourth order wave equations with damping, strain and source terms. J. Math. Anal. Appl. 405(1), 116–127 (2013). https://doi.org/10.1016/j.jmaa.2013.03.060

    Article  MathSciNet  MATH  Google Scholar 

  17. Song, H., Xue, D.: Blow up in a nonlinear viscoelastic wave equation with strong damping. Nonlinear Anal. 109, 245–251 (2014). https://doi.org/10.1016/j.na.2014.06.012

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, J.: Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. Appl. Math. Comput. 265, 807–818 (2015). https://doi.org/10.1016/j.amc.2015.05.098

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, Y.: A class of fourth-order parabolic equation with arbitrary initial energy. Nonlinear Anal. Real World Appl. 43, 451–466 (2018). https://doi.org/10.1016/j.nonrwa.2018.03.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, Y., Li, Q.: Threshold results for the existence of global and blow-up solutions to kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75(9), 3283–3297 (2018). https://doi.org/10.1016/j.camwa.2018.01.047

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, H.: Blow up of arbitrarily positive initial energy solutions for a viscoelastic wave equation. Nonlinear Anal. Real World Appl. 26, 306–314 (2015). https://doi.org/10.1016/j.nonrwa.2015.05.015

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, L., Sun, F., Wu, Y.: Blow-up of solutions for a nonlinear petrovsky type equation with initial data at arbitrary high energy level. Bound Value Probl. 2019, 15 (2019). https://doi.org/10.1186/s13661-019-1136-x

    Article  MathSciNet  Google Scholar 

  23. Sun, F., Liu, L., Wu, Y.: Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term. Appl. Anal. 98(4), 735–755 (2019). https://doi.org/10.1080/00036811.2017.1400536

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, F., Liu, L., Wu, Y.: Finite time blow-up for a thin-film equation with initial data at arbitrary energy level. J. Math. Anal. Appl. 458(1), 9–20 (2018). https://doi.org/10.1016/j.jmaa.2017.08.047

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, F., Liu, L., Wu, Y.: Finite time blow-up for a class of parabolic or pseudo-parabolic equations. Comput. Math. Appl. 75(10), 3685–3701 (2018). https://doi.org/10.1016/j.camwa.2018.02.025

    Article  MathSciNet  MATH  Google Scholar 

  26. Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(P u_t=-Au+F(u)\). Arch. Ration. Mech. Anal. 51(5), 371–386 (1973). https://doi.org/10.1007/bf00263041

    Article  MATH  Google Scholar 

  27. Levine, H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu_{tt} = -Au + F(u)\). Trans. Am. Math. Soc. 192, 1–21 (1974). https://doi.org/10.2307/1996814

    Article  MATH  Google Scholar 

  28. Sun, F., Liu, L., Wu, Y.: Blow-up of solutions for a nonlinear viscoelastic wave equation with initial data at arbitrary energy level. Appl. Anal. 98(12), 2308–2327 (2019). https://doi.org/10.1080/00036811.2018.1460812

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Y., Rammaha, M.A., Sakuntasathien, S., Titi, E.S., Toundykov, D.: Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping. J. Differ. Equ. 257(10), 3778–3812 (2014). https://doi.org/10.1016/j.jde.2014.07.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, Y., Rammaha, M.A., Sakuntasathien, S.: Blow-up of a hyperbolic equation of viscoelasticity with supercritical nonlinearities. J. Differ. Equ. 262(3), 1956–1979 (2017). https://doi.org/10.1016/j.jde.2016.10.037

    Article  MathSciNet  MATH  Google Scholar 

  31. Bociu, L., Lasiecka, I.: Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping. J. Differ. Equ. 249(3), 654–683 (2010). https://doi.org/10.1016/j.jde.2010.03.009

    Article  MathSciNet  MATH  Google Scholar 

  32. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

The authors were supported financially by the National Natural Science Foundation of China (11871302) and Natural Science Foundation of Shandong Province of China (ZR2019BA029, ZR2017MA036). The support from the Australian Research council for the research is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lishan Liu or Fenglong Sun.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

This article is part of the topical collection dedicated to Prof. Dajun Guo for his 85th birthday, edited by Yihong Du, Zhaoli Liu, Xingbin Pan, and Zhitao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Sun, F. & Wu, Y. Finite time blow-up for a nonlinear viscoelastic Petrovsky equation with high initial energy. SN Partial Differ. Equ. Appl. 1, 31 (2020). https://doi.org/10.1007/s42985-020-00031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00031-1

Keywords

Mathematics Subject Classification

Navigation