Skip to main content
Log in

Positive and negative solutions for the nonlinear fractional Kirchhoff equation in \({\mathbb {R}}^{N}\)

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the following nonlinear fractional Kirchhoff equation

$$\begin{aligned} (a+\lambda \int _{{\mathbb {R}}^{N}}|(-\varDelta )^{\frac{s}{2}}u|^{2}dx)(-\varDelta )^{s}u+V(x)u=f(x,u)+ w(x)|u|^{q-2}u,\ \ \ x\in {\mathbb {R}}^{N}, \end{aligned}$$

where \(N>2s,\ a>0, \lambda \ge 0\) is a parameter, \((-\varDelta )^{s}\) denotes the fractional Laplacian operator of order \(s\in (0, 1),\ 2_{s}^{\star }=\frac{2N}{N-2s},\ V\) and f are continuous, and \(w(x)\in L^{\frac{2_{s}^{\star }}{2_{s}^{\star }-q}}({\mathbb {R}}^{N}, {\mathbb {R}}^{+})\) with \(1<q<2\). By using variational methods, Pohozaev identity for the fractional Laplacian and iterative technique, two positive solutions and two negative solutions are obtained when the nonlinearity f does not satisfy the usual Ambrosetti–Rabinowitz condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Laskin, N.: Fractional Schrödinger equations. Phys. Rev. E 66, 56–108 (2002)

    Article  MathSciNet  Google Scholar 

  2. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  3. Applebawm, D.: Lévy process—from probability to finance and quantum groups. Not. Am. Math Soc. 51, 1336–1347 (2004)

    Google Scholar 

  4. Garroni, A., Müuer, S.: \(\Gamma\)-limit of a phase-field model of dislocations. SIAM. J. Math. Anal. 36, 1943–1964 (2005)

    Article  MathSciNet  Google Scholar 

  5. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Apl. SMA 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  7. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bernstein, S.: Surune class déquations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS Ser. Math. 4, 17–26 (1940)

    MathSciNet  Google Scholar 

  9. Chen, J., Tang, X., Luo, H.: Infinitely many solutions for fractional Schrödinger–Poisson systems with sign-changing potential. Electron. J. Differ. Equ. 97, 1–13 (2017)

    MATH  Google Scholar 

  10. Jeanjean, L.: Local conditions insuring bifurcation from the continuous spectrum. Math. Z. 232, 651–664 (1999)

    Article  MathSciNet  Google Scholar 

  11. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  12. Azzollini, A.: The elliptic Kirchhoff equation in \({\mathbb{R}}^{N}\) perturbed by a local nonlinearity. Differ. Integral Equ. 25, 543–554 (2012)

    MathSciNet  MATH  Google Scholar 

  13. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  Google Scholar 

  14. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    Article  MathSciNet  Google Scholar 

  15. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \({\mathbb{R}}^{N}\). Nonlinear Anal. RWA 12, 1278–287 (2011)

    Article  Google Scholar 

  16. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)

    Article  MathSciNet  Google Scholar 

  17. Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Tang, X., Zhang, W.: Existence of multiple solutions of Kirchhoff type equation with sign-changing potential. Appl. Math. Comput. 242, 491–499 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Duan, Y., Tang, C.: Multiple positive solutions for superlinear Kirchhoff type problems on \({\mathbb{R}}^{N}\). Electron. J. Differ. Equ. 316, 1–14 (2015)

    Google Scholar 

  20. Fan, H., Liu, X.: Positive and negative solutuons for a class of Kirchhoff type problems on unbounded domain. Nonlinear Anal. 114, 186–196 (2015)

    Article  MathSciNet  Google Scholar 

  21. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  22. Peng, J., Tang, X., Chen, S.: Nehari-type ground state solutions for asymptotically periodic fractional Kirchhoff-type problems in \({\mathbb{R}}^{N}.\) Bound. Value Probl. 2018, Article ID 3 (2018)

  23. Liu, Z., Squassina, M., Zhang, J.: Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimen-sion. NoDEA Nonlinear Differ. Equ. Appl. 24, 24–50 (2017)

    Article  Google Scholar 

  24. Zhang, J., Luo, Z., Ji, Y., Shao, W.: Ground state of Kirchhoff type fractional Schrödinger equations with critical growth. J. Math. Anal. Appl. 462, 57–83 (2018)

    Article  MathSciNet  Google Scholar 

  25. Capella, A., Dacila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some nonlocal semilinear equations. Commun. Partial Differ. Equ. 36, 1353–1384 (2011)

    Article  Google Scholar 

  26. Figueiredo, D., Girardi, M., Matzeu, M.: Semilinear elliptic equations with dependence on the gradient via mountain pass technique. Differintegral Equ. 17, 119–126 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Secchi, S.: On fractional Schrödinger equation in \({\mathbb{R}}^{N}\) without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. 47, 19–41 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Teng, K.: Multiple solutions for a class of fractional Schrödinger equation in \({\mathbb{R}}^{N}\). Nonlinear Anal. Real Word Appl. 21, 76–86 (2015)

    Article  Google Scholar 

  29. Wang, H.: Palais-Smale approaches to semilinear elliptic equations in unbounded domains. Electron. J. Differ. Equ. Monogr. 06, 1–21 (2004)

    MATH  Google Scholar 

Download references

Funding

This work was supported by NNSF of P.R.China (11671237).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yansheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Code availability

Not applicable.

Additional information

This article is part of the topical collection dedicated to Prof. Dajun Guo for his 85th birthday, edited by Yihong Du, Zhaoli Liu, Xingbin Pan, and Zhitao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y. Positive and negative solutions for the nonlinear fractional Kirchhoff equation in \({\mathbb {R}}^{N}\). SN Partial Differ. Equ. Appl. 1, 25 (2020). https://doi.org/10.1007/s42985-020-00030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00030-2

Keywords

Mathematics Subject Classification

Navigation