Skip to main content
Log in

Partial symmetry of normalized solutions for a doubly coupled Schrödinger system

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We consider the normalized solutions of a Schrödinger system which arises naturally from nonlinear optics, the Hartree–Fock theory for Bose–Einstein condensates. And we investigate the partial symmetry of normalized solutions to the system and their symmetry-breaking phenomena. More precisely, when the underlying domain is bounded and radially symmetric, we develop a kind of polarization inequality with weight to show that the first two components of the normalized solutions are foliated Schwarz symmetric with respect to the same point, while the latter two components are foliated Schwarz symmetric with respect to the antipodal point. Furthermore, by analyzing the singularly perturbed limit profiles of these normalized solutions, we prove that they are not radially symmetric at least for large nonlinear coupling constant \(\beta \), which seems a new method to prove the symmetry-breaking phenomenons of normalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent soltions on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Google Scholar 

  2. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342(7), 453–458 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 30(1), 85–112 (2007)

    MATH  Google Scholar 

  5. Ambrosetti, A., Colorado, E., Ruiz, D.: Solitons of linearly coupled systems of semilinear non-autonomous equations on \({\mathbb{R}}^n\). J. Funct. Anal. 254(11), 2816–2845 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bartsch, T.: Bifurcation in a multicomponent system of nonlinear Schrödinger equations. J. Fixed Point Theory Appl. 13(1), 37–50 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Dancer, E.N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R}}^3\). J. Math. Pures Appl. (9) 106(4), 583–614 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bartsch, T., Tian, R., Wang, Z.-Q.: Bifurcations for a coupled Schrödinger system with multiple components. Z. Angew. Math. Phys. 66(5), 2109–2123 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)

    MATH  Google Scholar 

  12. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Belmonte-Beitia, J., Pérez-García, V., Torres, P.: Solitary waves for linearly coupled nonlinear Schrödinger equations with inhomogeneous coefficients. J. Nonlinear Sci. 19(4), 437–451 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Byeon, J.: Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 54(2), 2287–2340 (2015)

    MATH  Google Scholar 

  16. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278(1), 1–17 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Chang, K.-C.: An extension of the Hess–Kato theorem to elliptic systems and its applications to multiple solution problems. Acta Math. Sin. (Engl. Ser.) 15(4), 439–454 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Zou, W.: Ground states for a system of Schrödinger equations with critical exponent. J. Funct. Anal. 262(7), 3091–3107 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Conti, M., Terracini, S., Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Dai, G., Tian, R., Zhang, Z.: Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete Contin. Dyn. Syst. Ser. S 12(7), 1905–1927 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Dancer, E.N., Wang, K., Zhang, Z.: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species. J. Differ. Equ. 251(10), 2737–2769 (2011)

    MATH  Google Scholar 

  22. Dancer, E.N., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361(3), 1189–1208 (2009)

    MATH  Google Scholar 

  23. Deconinck, B., Kevrekidis, P. G., Nistazakis, H.E., Frantzeskakis, D.J. : Linearly coupled Bose–Einstein condesates: from Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves. Phys. Rev. A 70(6), 063605, 705–706 (2004)

  24. He, H.: Symmetry breaking for ground-state solutions of Hénon systems in a ball. Glasg. Math. J. 53(2), 245–255 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Li, K., Zhang, Z.: Existence of solutions for a Schrödinger system with linear and nonlinear couplings. J. Math. Phys. 57(8), 081504 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Lin, T., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n, n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    MATH  Google Scholar 

  27. Lin, T., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 403–439 (2005)

  28. Lin, T., Wei, J.: Erratum: “Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n,n\le 3\)” [Commun. Math. Phys. 255(3), 629–653 (2005); MR2135447]. Commun. Math. Phys. 277(2), 573–576 (2008)

  29. Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282(3), 721–731 (2008)

    MATH  Google Scholar 

  30. Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10(1), 175–193 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Luo, H.J., Zhang, Z.T.: Existence and nonexistence of bound state solutions for Schrödinger systems with linear and nonlinear couplings. J. Math. Anal. Appl. 475(1), 350–363 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Luo, H.J., Zhang, Z.T.: Limit configurations of Schrödinger systems versus optimal partition for the principal eigenvalue of elliptic systems. Adv. Nonlinear Stud. 19(4), 693–715 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Ma, R., Chen, T., Wang, H.: Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl. 443(1), 542–565 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    MATH  Google Scholar 

  35. Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., Wieman, C.E.: Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997)

    Google Scholar 

  36. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Convergence of minimax structures and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc. (JEMS) 14(4), 1245–1273 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Peng, S., Shuai, W., Wang, Q.: Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent. J. Differ. Equ. 263(1), 709–731 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Perera, K., Tintarev, C., Wang, J., Zhang, Z.: Ground and bound state solutions for a Schrödinger system with linear and nonlinear couplings in \({\mathbb{R}}^N\). Adv. Differ. Equ. 23(7–8), 615–648 (2018)

    MATH  Google Scholar 

  39. Rüegg, Ch., et al.: Bose–Einstein condensate of the triplet ststes in the magnetic insulator TlCuCl3. Nature 423, 62–65 (2003)

    Google Scholar 

  40. Smets, D., Willem, M., Su, J.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Commun. Math. Phys. 271(1), 199–221 (2007)

    MATH  Google Scholar 

  42. Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218(2), 647–697 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Tavares, H., Weth, T.: Existence and symmetry results for competing variational systems. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 715–740 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Tian, R., Zhang, Z.: Existence and bifurcation of solutions for a double coupled system of Schrödinger equations. Sci. China Math. 58(8), 1607–1620 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Z.-Q., Willem, M.: Partial symmetry of vector solutions for elliptic systems. J. Anal. Math. 122, 69–85 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Weth, T.: Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Dtsch. Math.-Ver. 112(3), 119–158 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, Z.: Variational, Topological, and Partial Order Methods with Their Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  48. Zhang, Z.T., Luo, H.J.: Symmetry and asymptotic behavior of ground state solutions for Schrödinger systems with linear interaction. Commun. Pure Appl. Anal. 17(3), 787–806 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

H. Luo is supported by National Natural Science Foundation of China, 11901182, and by the Fundamental Research Funds of the Central Universities, 531118010205. Z. Zhang is supported by National Natural Science Foundation of China, 11771428, 11926335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Luo.

Additional information

This article is part of the topical collection dedicated to Prof. Dajun Guo for his 85th birthday, edited by Yihong Du, Zhaoli Liu, Xingbin Pan, and Zhitao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhang, Z. Partial symmetry of normalized solutions for a doubly coupled Schrödinger system. SN Partial Differ. Equ. Appl. 1, 24 (2020). https://doi.org/10.1007/s42985-020-00016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00016-0

Keywords

Mathematics Subject Classification

Navigation