Skip to main content

Advertisement

Log in

Hardy type inequalities with spherical derivatives

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

A Hardy type inequality is presented with spherical derivatives in \({\mathbb {R}}^{n}\) with \(n\ge 2\) in the framework of equalities. This clarifies the difference between contribution by radial and spherical derivatives in the improved Hardy inequality as well as nonexistence of nontrivial extremizers without compactness arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24, 177–209 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871–1885 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bez, N., Jeavons, C., Ozawa, T., Sugimoto, M.: Stability of trace theorems on the sphere. J. Geom. Anal. 28, 1456–1476 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bez, N., Machihara, S., Sugimoto, M.: Extremisers for the trace theorem on the sphere. Math. Res. Lett. 23, 633–647 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bez, N., Saito, H., Sugimoto, M.: Applications of the Funk-Hecke theorem to smoothing and trace estimates. Adv. Math. 285, 1767–1795 (2015)

    Article  MathSciNet  Google Scholar 

  7. Birman, MSh, Laptev, A.: The negative discrete spectrum of a two-dimensional Schrödinger operator. Commun. Pure Appl. Math. 49, 967–997 (1996)

    Article  Google Scholar 

  8. Bogdan, K., Dyda, B., Kim, P.: Hardy inequalities and non-explosion results for semigroups. Potential Anal. 44, 229–247 (2016)

    Article  MathSciNet  Google Scholar 

  9. Costa, D.G.: Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities. J. Math. Anal. Appl. 337, 311–317 (2008)

    Article  MathSciNet  Google Scholar 

  10. Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L^p(\Omega )\). Math. Z. 227, 511–523 (1998)

    Article  MathSciNet  Google Scholar 

  11. Dolbeault, J., Volzone, B.: Improved Poincaré inequalities. Nonlinear Anal. 75, 5985–6001 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ekholm, T., Frank, R.L.: On Lieb-Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264, 725–740 (2006)

    Article  Google Scholar 

  13. Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349, 1–57 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ghoussoub, N., Moradifam, A.: On the best possible remaining term in the Hardy inequality. Proc. Natl. Acad. Sci. USA 1305, 13746–13751 (2008)

    Article  MathSciNet  Google Scholar 

  15. Ioku, N., Ishiwata, M., Ozawa, T.: Sharp remainder of a critical Hardy inequality. Arch. Math. (Basel) 1, 65–71 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ioku, N., Ishiwata, M., Ozawa, T.: Hardy type inequalities in \(L^p\) with sharp remainders. J. Inequal. Appl. Paper No. 5 (2017)

  17. Ioku, N., Ishiwata, M.: A scale invariant form of a critical Hardy inequality. Int. Math. Res. Not. IMRN 18, 8830–8846 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  19. Machihara, S., Ozawa, T., Wadade, H.: Hardy type inequalities on balls. Tohoku Math. J. 65, 321–330 (2013)

    Article  MathSciNet  Google Scholar 

  20. Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Rellich inequality. Math. Z. 286, 1367–1373 (2017)

    Article  MathSciNet  Google Scholar 

  21. Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Hardy type inequalities with remainder terms in the framework of equalities. Adv. Stud. Pure Math. 81, 247–258 (2016)

    Google Scholar 

  22. Ruzhansky, M., Suragan, D.: Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups. Adv. Math. 317, 799–822 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sano, M., Takahashi, F.: Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Partial Differ. Equ. 56, 56–69 (2017)

    Article  MathSciNet  Google Scholar 

  24. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J. (1971)

  25. Takahashi, F.: A simple proof of Hardy’s inequality in a limiting case. Arch. Math. (Basel) 104, 77–82 (2015)

    Article  MathSciNet  Google Scholar 

  26. Walther, B.: Regularity, decay, and best constants for dispersive equations. J. Funct. Anal. 189, 325–335 (2002)

    Article  MathSciNet  Google Scholar 

  27. Yafaev, D.: Sharp constants in the Hardy-Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by JSPS KAKENHI Grant number 16H05995 and 16K1377, the second author was supported by JSPS KAKENHI Grant number JP16K05191, the third author was supported by JSPS KAKENHI Grant number 19H00644 and 18KK0073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Machihara.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bez, N., Machihara, S. & Ozawa, T. Hardy type inequalities with spherical derivatives. SN Partial Differ. Equ. Appl. 1, 5 (2020). https://doi.org/10.1007/s42985-019-0001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-019-0001-1

Mathematics Subject Classification

Navigation