Skip to main content

Advertisement

Log in

Expediting Prediction Accuracy with Exploration and Incorporation of Virtual Data

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Achieving high accuracy in time series forecasting (TSF) is challenging; particularly for series with inadequate training data or insignificant correlation among data. Modelling such time series with ANN based systems which are data driven and necessitate abundant training samples, leads to poor generalization ability thus, inferior accuracy. In such circumstances, the time series may be enriched with few more virtual data points (VDPs) explored from existing training samples keeping the corelation factor in mind. Incorporation of such VDPs intensify the volume of training data and helps the model in extracting the inherent nonlinearity efficiently. This article proposes an extreme learning with Rao algorithm based VDP (ELRA-VDP) generation and incorporation approach to expediate TSF accuracy of ANN model. Extreme learning method (ELM) considers random hidden node parameters and apply a generalized inverse function on hidden node outputs to determines the output node parameters. Inclusion of random hidden node parameters may reduce the performance of ELM therefore, we used Rao algorithm (RA) to optimize the initial parameters and construct an efficient learning scheme, i.e., ELRA. Given a training sample, the ELRA estimates the VDPs as well as forecasts the next data in an alternative manner. The parameter-free optimization mechanism of RA and lower complexity with faster learning ability of ELM makes ELRA computationally efficient. TSF problems are then conducted with and without VDPs. Simulation studies show that ELRA-VDP method yields better predictions than others with a lowest MAPE value of 0.1746 and quite beneficial for datasets having a lesser amount of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

The datasets analyzed and experimented during the current study are openly available at “https://archive.ics.uci.edu/ml/datasets/Concrete%20Compressive%20Strength”. The relevant papers are cited in the article.

References

  1. Hong A, Gao M, Gao Q, Peng XH. Non-stationary financial time series forecasting based on meta-learning. Electron Lett. 2023;59(1): e12681.

    Article  Google Scholar 

  2. Nayak SC, Dehuri S, Cho SB. Intelligent financial forecasting with an improved chemical reaction optimization algorithm based dendritic neuron model. IEEE Access. 2022;15(10):130921–43.

    Article  Google Scholar 

  3. Nayak SC. Bitcoin closing price movement prediction with optimal functional link neural networks. Evol Intel. 2022;15(3):1825–39.

    Article  Google Scholar 

  4. Zhou K, Wang W, Huang L, Liu B. Comparative study on the time series forecasting of web traffic based on statistical model and generative adversarial model. Knowl-Based Syst. 2021;15(213): 106467.

    Article  Google Scholar 

  5. Werner G, Yang S, McConky K. Time series forecasting of cyber attack intensity. In: Proceedings of the 12th annual conference on cyber and information security research. 2017. p. 1–3.

  6. Fouladi RF, Ermiş O, Anarim E. A DDoS attack detection and defense scheme using time-series analysis for SDN. J Inf Secur Appl. 2020;1(54): 102587.

    Google Scholar 

  7. Seyedan M, Mafakheri F. Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. J Big Data. 2020;7(1):1–22.

    Article  Google Scholar 

  8. Kaushik S, Choudhury A, Sheron PK, Dasgupta N, Natarajan S, Pickett LA, Dutt V. AI in healthcare: time-series forecasting using statistical, neural, and ensemble architectures. Front Big Data. 2020;19(3):4.

    Article  Google Scholar 

  9. Morid MA, Sheng OR, Dunbar J. Time series prediction using deep learning methods in healthcare. ACM Trans Manag Inf Syst. 2023;14(1):1–29.

    Article  Google Scholar 

  10. Puri C, Kooijman G, Vanrumste B, Luca S. Forecasting time series in healthcare with Gaussian processes and dynamic time warping based subset selection. IEEE J Biomed Health Inform. 2022;26(12):6126–37.

    Article  Google Scholar 

  11. Xiao H, Jiang X, Chen C, Wang W, Wang CY, Ali AA, Berthe A, Moussa RK, Diaby V. Using time series analysis to forecast the health-related quality of life of post-menopausal women with non-metastatic ER+ breast cancer: a tutorial and case study. Res Soc Adm Pharm. 2020;16(8):1095–9.

    Article  Google Scholar 

  12. Jiang S, Yu ZG, Anh VV, Zhou Y. Long-and short-term time series forecasting of air quality by a multi-scale framework. Environ Pollut. 2021;15(271): 116381.

    Article  Google Scholar 

  13. Espinosa R, Palma J, Jiménez F, Kamińska J, Sciavicco G, Lucena-Sánchez E. A time series forecasting based multi-criteria methodology for air quality prediction. Appl Soft Comput. 2021;1(113): 107850.

    Article  Google Scholar 

  14. Amoo OT, Abayomi A, Ikudayisi A, Makupula N. Time series trend modelling and forecasting of selected water quality parameters in the Mthatha River Catchment, South Africa. Water Pract Technol. 2023;18(1):185–200.

    Article  Google Scholar 

  15. Le Guen V, Thome N. Deep time series forecasting with shape and temporal criteria. IEEE Trans Pattern Anal Mach Intell. 2022;45(1):342–55.

    Article  Google Scholar 

  16. Hsu YC, Buehler MJ. DyFraNet: forecasting and backcasting dynamic fracture mechanics in space and time using a 2D-to-3D deep neural network. APL Mach Learn. 2023;1(2): 026105.

    Article  Google Scholar 

  17. Lasheras FS, Juez FJC, Sánchez AS, Krzemień A, Fernández PR. Forecasting the Comex copper spot price by means of neural networks and Arima models. Resour Policy. 2015;45:37–43.

    Article  Google Scholar 

  18. Kedrowski R, Nelson J, Nair AS, Ranganathan P. Short-term seasonal energy forecasting. In: 2018 IEEE international conference on electro/information technology. 2018; IEEE.

  19. Nayak SC, Misra BB, Behera HS. Comparison of performance of different functions in functional link artificial neural network: a case study on stock index forecasting. In: Computational intelligence in data mining-volume 1. New Delhi: Springer; 2015. p. 479–87.

  20. Nayak SC. A fireworks algorithm-based Pi-Sigma neural network (FWA-PSNN) for modelling and forecasting chaotic crude oil price time series. EAI Endorsed Trans Energy Web. 2020;7(28):e2–e2.

    Google Scholar 

  21. Behera AK, Nayak SC, Kumar C, Dash S, Dehuri S, Panda M. Improving software reliability prediction accuracy using CRO-based FLANN. In: Innovations in computer science and engineering. Singapore: Springer; 2019. p. 213–20.

  22. Jo TC. The effect of virtual term generation on the neural-based approaches to time series prediction. In: 2003 4th international conference on control and automation proceedings. IEEE; 2003. p. 516–20.

  23. Sfetsos A, Siriopoulos C. Time series forecasting of averaged data with efficient use of information. IEEE Trans Syst Man Cybern Part A Syst Hum. 2005;35(5):738–45.

    Article  Google Scholar 

  24. Jo T. The effect of mid-term estimation on back propagation for time series prediction. Neural Comput Appl. 2010;19(8):1237–50.

    Article  Google Scholar 

  25. Jo T. VTG schemes for using back propagation for multivariate time series prediction. Appl Soft Comput. 2013;13(5):2692–702.

    Article  Google Scholar 

  26. Nayak SC, Misra BB, Behera HS. Efficient financial time series prediction with evolutionary virtual data position exploration. Neural Comput Appl. 2019;31(2):1053–74.

    Article  Google Scholar 

  27. Nayak SC, Dehuri S, Cho SB. ELMVDP: extreme learning based virtual data position exploration and incorporation method for escalation of time series forecasting accuracy. In: 2022 OITS international conference on information technology (OCIT). IEEE; 2022. p. 129–33.

  28. Fernández-Navarro F, Hervás-Martínez C, Ruiz R, Riquelme JC. Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection. Appl Soft Comput. 2012;12(6):1787–800.

    Article  Google Scholar 

  29. Nayak SC, Misra BB, Behera HS. ACFLN: artificial chemical functional link network for prediction of stock market index. Evol Syst. 2019;10(4):567–92.

    Article  Google Scholar 

  30. Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1–3):489–501.

    Article  Google Scholar 

  31. Wang J, Lu S, Wang SH, et al. A review on extreme learning machine. Multimed Tools Appl. 2022;81:41611–60. https://doi.org/10.1007/s11042-021-11007-7.

    Article  Google Scholar 

  32. Chen K, Lv Q, Lu Y, Dou Y. Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing. 2017;230:345–58.

    Article  Google Scholar 

  33. Chorowski J, Wang J, Zurada JM. Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing. 2014;128:507–16.

    Article  Google Scholar 

  34. Deng W-Y, Zheng Q-H, Wang Z-M. Cross-person activity recognition using reduced kernel extreme learning machine. Neural Netw. 2014;53:1–7.

    Article  Google Scholar 

  35. Duan J, Ou Y, Hu J, Wang Z, Jin S, Xu C. Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Trans Syst Man Cybernet: Syst. 2019;49(6):1175–85.

    Article  Google Scholar 

  36. Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access. 2019;7:36266–73.

    Article  Google Scholar 

  37. Li J, Shi X, You Z, Yi H, Chen Z, Lin Q, Fang M. Using weighted extreme learning machine combined with scale-invariant feature transform to predict protein-protein interactions from protein evolutionary information. IEEE/ACM Trans Comput Biol Bioinform. 2020;17:1546–54.

    Google Scholar 

  38. Wang L, You Z, Huang D, Zhou F. Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans Comput Biol Bioinform. 2020;17(3):972–80.

    Article  Google Scholar 

  39. Lu F, Wu JD, Huang JQ, Qiu XJ. Restricted-Boltzmann-based extreme learning machine for gas path fault diagnosis of turbofan engine. IEEE Trans Ind Inform. 2020;16(2):959–68.

    Article  Google Scholar 

  40. Zheng D, Hong Z, Wang N, Chen P. An improved LDA-based ELM classification for intrusion detection algorithm in IoT application. Sensors (Basel, Switzerland). 2020;20(6):1706.

    Article  Google Scholar 

  41. Zang S, Li D, Ma C, Ma J. Joint transfer extreme learning machine with cross-domain mean approximation and output weight alignment. Complexity. 2023: 2023

  42. Gao Y, Li C, Huang L. An improved deep extreme learning machine to predict the remaining useful life of lithium-ion battery. Front Energy Res. 2022;10:1032660.

    Article  Google Scholar 

  43. Jiang K, Yang P, Zhang B, Liu Z, Fu J, Li S. A novel extreme-learning-machine aided receiver design for THz-SM with hardware imperfections. IEEE Commun Lett. 2022;26(11):2606–10.

    Article  Google Scholar 

  44. Zhang X, Qin L. An improved extreme learning machine for imbalanced data classification. IEEE Access. 2022;10:8634–42.

    Article  Google Scholar 

  45. Grigorievskiy A, Miche Y, Ventelä AM, Séverin E, Lendasse A. Long-term time series prediction using OP-ELM. Neural Netw. 2014;51:50–6.

    Article  Google Scholar 

  46. Sun ZL, Choi TM, Au KF, Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst. 2008;46(1):411–9.

    Article  Google Scholar 

  47. Dash R, Dash PK, Bisoi R. A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction. Swarm Evol Comput. 2014;19:25–42.

    Article  Google Scholar 

  48. Nayak SC, Misra BB. Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Financ Innov. 2018;4(1):21.

    Article  Google Scholar 

  49. Zhang R, Dong ZY, Xu Y, Meng K, Wong KP. Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine. IET Gener Transm Distrib. 2013;7(4):391–7.

    Article  Google Scholar 

  50. Yap KS, Yap HJ. Daily maximum load forecasting of consecutive national holidays using OSELM-based multi-agents system with weighted average strategy. Neurocomputing. 2012;81:108–12.

    Article  Google Scholar 

  51. Yang H, Yi J, Zhao J, Dong Z. Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing. 2013;102:154–62.

    Article  Google Scholar 

  52. Han F, Yao HF, Ling QH. An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing. 2013;116:87–93.

    Article  Google Scholar 

  53. Han F, Yao HF, Ling QH. An improved extreme learning machine based on particle swarm optimization. In: International conference on intelligent computing. Berlin: Springer; 2011. p. 699–704.

  54. Zhu QY, Qin AK, Suganthan PN, Huang GB. Evolutionary extreme learning machine. Pattern Recogn. 2005;38(10):1759–63.

    Article  Google Scholar 

  55. Mohapatra P, Chakravarty S, Dash PK. An improved cuckoo search based extreme learning machine for medical data classification. Swarm Evol Comput. 2015;24:25–49.

    Article  Google Scholar 

  56. Nayak SC, Misra BB. Extreme learning with chemical reaction optimization for stock volatility prediction. Financ Innov. 2020;6(1):1–23.

    Article  Google Scholar 

  57. Al-Shamiri AK, Sadollah A, Kim JH. Harmony search algorithms for optimizing extreme learning machines. In: Nigdeli SM, Kim JH, Bekdaş G, Yadav A, editors. Proceedings of 6th international conference on harmony search, soft computing and applications. ICHSA 2020. Advances in intelligent systems and computing, vol 1275. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-8603-3_2.

  58. Eshtay M, Faris H, Obeid N. Metaheuristic-based extreme learning machines: a review of design formulations and applications. Int J Mach Learn Cybern. 2019;10(6):1543–61. https://doi.org/10.1007/s13042-018-0833-6.

    Article  Google Scholar 

  59. Escobar H, Cuevas E. Implementation of metaheuristics with extreme learning machines. In: Oliva D, Houssein EH, Hinojosa S, editors. Metaheuristics in machine learning: theory and applications. Studies in computational intelligence, vol 967. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-70542-8_6.

  60. Kumar R, Singh MP, Roy B, et al. A comparative assessment of metaheuristic optimized extreme learning machine and deep neural network in multi-step-ahead long-term rainfall prediction for all-Indian regions. Water Resour Manage. 2021;35:1927–60. https://doi.org/10.1007/s11269-021-02822-6.

    Article  Google Scholar 

  61. Rao R. Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput. 2020;11(1):107–30.

    Google Scholar 

  62. Rao RV, Pawar RB. Constrained design optimization of selected mechanical system components using Rao algorithms. Appl Soft Comput. 2020;89: 106141.

    Article  Google Scholar 

  63. Rao RV, Pawar RB. Self-adaptive multi-population Rao algorithms for engineering design optimization. Appl Artif Intell. 2020;34(3):187–250.

    Article  Google Scholar 

  64. Premkumar M, Babu TS, Umashankar S, Sowmya R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik. 2020;208: 164559.

    Article  Google Scholar 

  65. Wang L, Wang Z, Liang H, Huang C. Parameter estimation of photovoltaic cell model with Rao-1 algorithm. Optik. 2019;210: 163846.

    Article  Google Scholar 

  66. Jabir HA, Kamel S, Selim A, Jurado F. Optimal coordination of overcurrent relays using metaphor-less simple method. In: 2019 21st international middle east power systems conference (MEPCON). IEEE; 2019. p. 1063–67.

  67. Das S, Nayak SC, Sahoo B. Towards crafting optimal functional link artificial neural networks with Rao algorithms for stock closing prices prediction. Comput Econ. 2022;60:1–23. https://doi.org/10.1007/s10614-021-10130-9.

    Article  Google Scholar 

  68. Nayak SC, Nayak SK. A hybrid ANN with Rao algorithm based optimization (RA + ANN) for short term forecasting of crypto currencies. In: Sahoo JP, Tripathy AK, Mohanty M, Li KC, Nayak AK, editors. Advances in distributed computing and machine learning. Lecture notes in networks and systems, vol 302. Singapore: Springer; 2022. https://doi.org/10.1007/978-981-16-4807-6_35.

  69. Elalem YK, Maier S, Seifert RW. A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks. Int J Forecast. 2022. https://doi.org/10.1016/j.ijforecast.2022.09.005.

    Article  Google Scholar 

  70. Zhang H, Chen Y. Analysis and application of Grey-Markov chain model in tax forecasting. J Math. 2021;2021:1–11. https://doi.org/10.1155/2021/9918411.

    Article  MathSciNet  Google Scholar 

  71. Al-qaness MA, Saba AI, Elsheikh AH, Elaziz MA, Ibrahim RA, Lu S, Hemedan AA, Shanmugan S, Ewees AA. Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil. Process Saf Environ Prot. 2021;149:399–409. https://doi.org/10.1016/j.psep.2020.11.007.

    Article  Google Scholar 

  72. Syamala Rao P, Parthasaradhi Varma G, Durga Prasad C. Financial time series forecasting using optimized multistage wavelet regression approach. Int J Inf Technol. 2022;14(4):2231–40. https://doi.org/10.1007/s41870-022-00924-x.

    Article  Google Scholar 

  73. He K, Yang Q, Ji L, Pan J, Zou Y. Financial time series forecasting with the deep learning ensemble model. Mathematics. 2023;11(4):1054. https://doi.org/10.3390/math11041054.

    Article  Google Scholar 

  74. Li N, Li M. Forecast of chemical export trade based on PSO-BP neural network model. J Math. 2022;2022:1–10. https://doi.org/10.1155/2022/1487746.

    Article  Google Scholar 

  75. Vennila C, Titus A, Sudha TS, Sreenivasulu U, Reddy NPR, Jamal K, Lakshmaiah D, Jagadeesh P, Belay A. Forecasting solar energy production using machine learning. Int J Photoenergy. 2022;2022:1–7. https://doi.org/10.1155/2022/7797488.

    Article  Google Scholar 

  76. Yu Y. GDP economic forecasting model based on improved RBF neural network. Math Probl Eng. 2022;2022:1–11. https://doi.org/10.1155/2022/7630268.

    Article  Google Scholar 

  77. Zhu C, Wang J, Tian J. Grain consumption forecasting: one modified MLR model combined with time series forecasting theory. Int J Math Math Sci. 2020;2020:1–11. https://doi.org/10.1155/2020/3956717.

    Article  MathSciNet  Google Scholar 

  78. Dash S, Chakraborty C, Giri SK, Pani SK. Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics. Pattern Recogn Lett. 2021;151:69–75. https://doi.org/10.1016/j.patrec.2021.07.027.

    Article  Google Scholar 

  79. Čapek J, Crespo Cuaresma J, Hauzenberger N, Reichel V. Macroeconomic forecasting in the euro area using predictive combinations of DSGE models. Int J Forecast. 2022. https://doi.org/10.1016/j.ijforecast.2022.09.002.

    Article  Google Scholar 

  80. Gong S, Tan Y, Wang W. Prediction and evaluation of coal mine coal bump based on improved deep neural network. Geofluids. 2021;2021:1–11. https://doi.org/10.1155/2021/7794753.

    Article  Google Scholar 

  81. Liu E, Zhu H, Liu Q, Udimal TB. Regional economic forecasting method based on recurrent neural network. Math Probl Eng. 2022;2022:1–6. https://doi.org/10.1155/2022/3058947.

    Article  Google Scholar 

  82. Alassafi MO, Jarrah M, Alotaibi R. Time series predicting of COVID-19 based on deep learning. Neurocomputing. 2022;468:335–44. https://doi.org/10.1016/j.neucom.2021.10.035.

    Article  Google Scholar 

  83. Rohaan D, Topan E, Groothuis-Oudshoorn C. Using supervised machine learning for B2B sales forecasting: a case study of spare parts sales forecasting at an after-sales service provider. Expert Syst Appl. 2022;188: 115925. https://doi.org/10.1016/j.eswa.2021.115925.

    Article  Google Scholar 

  84. Ensafi Y, Amin SH, Zhang G, Shah B. Time-series forecasting of seasonal items sales using machine learning—a comparative analysis. Int J Inf Manag Data Insights. 2022;2(1): 100058. https://doi.org/10.1016/j.jjimei.2022.100058.

    Article  Google Scholar 

  85. Ma X. Tourism demand forecasting based on grey model and BP neural network. Complexity. 2021;2021:1–13. https://doi.org/10.1155/2021/5528383.

    Article  Google Scholar 

  86. Nayak SC. Development and performance evaluation of adaptive hybrid higher order neural networks for exchange rate prediction. Int J Intell Syst Appl. 2017;9(8):71–85. https://doi.org/10.5815/ijisa.2017.08.08.

    Article  Google Scholar 

  87. Subhranginee D, Nayak SC, Biswajit S. Towards crafting optimal functional link artificial neural networks with Rao algorithms for stock closing prices prediction. Comput Econ. 2021;60(1):1–23.

    Google Scholar 

  88. Nayak SC, Misra BB. Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Financ Innov. 2018. https://doi.org/10.1186/s40854-018-0104-2.

    Article  Google Scholar 

  89. Lahmiri S, Bekiros S. Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos Solitons Fractals. 2020;133: 109641.

    Article  MathSciNet  Google Scholar 

  90. Mudassir M, Bennbaia S, Unal D, Hammoudeh M. Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach. Neural Comput Appl. 2020:1–15.

  91. Nayak SC. A fireworks algorithm based Pi-Sigma neural network (FWA-PSNN) for modelling and forecasting chaotic crude oil price time series. EAI Endorsed Trans Energy Web. 2020. https://doi.org/10.4108/eai.13-7-2018.162803.

    Article  Google Scholar 

  92. Rajashree D, Rasmita R, Rasmita D. Utility of a shuffled differential evolution algorithm in designing of a Pi-sigma neural network based predictor model. Appl Comput Inform. 2019;19(1/2):22–40.

    Google Scholar 

  93. http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength.

  94. https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SCN: problem formulation, data collection, implementation, initial draft preparation. SND: conceptualization, writing and supervision. SBC: conceptualization, review and supervision. All author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Sarat Chandra Nayak.

Ethics declarations

Conflict of interest

The author declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Innovation in Smart Things: A Systems, Security, and AI Perspective” guest edited by Niranjan K Ray, Prasanth Yanambaka and Rakesh Balabantaray.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.C., Dehuri, S. & Cho, SB. Expediting Prediction Accuracy with Exploration and Incorporation of Virtual Data. SN COMPUT. SCI. 5, 545 (2024). https://doi.org/10.1007/s42979-024-02900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02900-7

Keywords

Navigation