Skip to main content
Log in

Spatiotemporal Modelling of Soil Organic Carbon Stocks in a Semi-Arid Region Using a Multilayer Perceptron Algorithm

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Spatial modelling of soil organic carbon stock (SOCS) and its future dynamics are essential for the sustainable management of terrestrial ecosystems and the planning of carbon sequestration measures. In this study, a spatial modelling approach of the dynamics of the SOCS distribution between 1985 and 2050 and its relationship with land use/land cover (LULC) change in the Béni-Mellal region was accomplished by performing a spatial regression using a multilayer perceptron (MLP) driven by 10 predictors and SOCS data from 40 soil samples. Predictors were extracted from Landsat 5 TM/8 OLI and Sentinel-2 MSI multispectral images and CA-Markov was used for geo-simulations predicting future dynamics. This result shows that the spatial distribution of SOCS and its temporal dynamics in terms of positive and negative variations are strongly linked to spatiotemporal changes in LULC. Over the period 1985–2018, the results showed both progressive variations in the soils of tree crops, unused land and soils in urban areas, slight variations in forest soils and significantly regressive variations in the soils of cropland (− 606 kg.106). The future dynamics from 2018 to 2050 suggest a very significant positive evolution of the SOCS in forest soils with a rate of change of 35.6 kg.106, while the regressive evolution of the SOCS in cropland should continue at − 73.1 kg.106. Furthermore, the spatial autocorrelation results suggest that the spatial distribution of LULC units, topography and vegetation indices are the main factors influencing the quantitative distribution of SOCS in the study area, with correlations ranging from 0.8 to 0.94.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used can be made available upon request from the corresponding author (M. Oukhattar).

References

  1. FAO. Soil is a non-renewable resource. 2015.

  2. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2005;304:1623–7.

    Article  Google Scholar 

  3. Xiong X, Sabine GD, Brenton M, Wade R, Willie GH, Nicolas BC. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci Total Environ. 2014;493:974–82.

    Article  Google Scholar 

  4. Bernoux M, Conceicao MD, Carvalho S, Volkoff B, Cerri CC. CO2 emission from mineral soils following land-cover change in Brazil. Glob Change Biol. 2001;7(7):779–87.

    Article  Google Scholar 

  5. Hutchinson JJ, Campbell CA, Desjardins RL. Some perspectives on carbon sequestration in agriculture. Agric For Meteorol. 2007;142(24):1–302.

    Google Scholar 

  6. Yang RM, Zhang GL, Yang F, Zhi JJ, Yang F, Liu F, Zhao YG, Li DC. Precise estimation of soil organic carbon stocks in the northeast Tibetan plateau. Sci Rep. 2016;6:21842.

    Article  Google Scholar 

  7. Yang S, Sheng D, Adamowski J, Gong Y, Zhang J, Cao J. Effect of land use change on soil carbon storage over the last 40 years in the Shi Yang River Basin, China. Land. 2018;7(1):11.

    Article  Google Scholar 

  8. Beesley L. Carbon storage and fuxes in existing and newly created urban soils. J Environ Manag. 2012;104:158–65.

    Article  Google Scholar 

  9. Wei ZQ, Wu SH, Zhou SL, Li JT, Zhao QG. Soil organic carbon transformation and related properties in urban soil under impervious surfaces. Pedosphere. 2014;24(1):56–64.

    Article  Google Scholar 

  10. Golubiewski NE. Urbanisation increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl. 2006;16(2):555–71.

    Article  Google Scholar 

  11. Raciti SM, Hutryra LR, Finzi AC. Depleted soil carbon and nitrogen stocks under impervious surfaces. Environ Pollut. 2012;164:248–51.

    Article  Google Scholar 

  12. Ait Ouhamchich K, Karaoui I, Arioua A, Kasmi A, Elhamdouni D, Elfiraoui E, Arioua Z, Nazi F, Nabih N. Climate change trend observations in Morocco: case study of Beni Mellal-Khenifra and Darâa-Tafilalt regions. J Geosci Environ Prot. 2018;6:34–50.

    Google Scholar 

  13. El Jazouli A, Barakat A, Khellouk R, Rais J, El Baghdadi M. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sens Appl Soc Environ. 2018;13:361–74.

    Google Scholar 

  14. Barakat A, Ouargaf Z, Khellouk R, El Jazouli A, Touhami F. Land use/land cover change and environmental impact assessment in Béni-Mellal district (Morocco) using remote sensing and GIS. Earth Syst Environ. 2019;3:1–13.

    Article  Google Scholar 

  15. Baki Y, Boutoial K, Medaghri-Alaoui A. The impact of climate change on water inflow of the three largest dams in the Beni Mellal-Khenifra region. E3S Web Conf. 2021;314:03002.

    Article  Google Scholar 

  16. Heuvelink GB, Angelini ME, Poggio L, Bai Z, Batjes NH, van den Bosch R, Sanderman J. Machine learning in space and time for modelling soil organic carbon change. Eur J Soil Sci. 2021;72(4):1607–23.

    Article  Google Scholar 

  17. Odebiri O, Mutanga O, Odindi J, Naicker R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: a remote sensing and deep learning approach. ISPRS J Photogramm Remote Sens. 2022;188:351–62.

    Article  Google Scholar 

  18. Ahmed IS, Hassan FA, Sulieman MM, Keshavarzi A, Elmobarak AA, Yousif KM, Brevik EC. Using environmental covariates to predict soil organic carbon stocks in Vertisols of Sudan. Geoderma Reg. 2022;31: e00578.

    Article  Google Scholar 

  19. Sanderman J, Baldock JA, Dangal SR, Ludwig S, Potter S, Rivard C, Savage K. Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy. Biogeochemistry. 2021;156(1):97–114.

    Article  Google Scholar 

  20. Ahmadi A, Emami M, Daccache A, He L. Soil properties prediction for precision agriculture using visible and near-infrared spectroscopy: a systematic review and meta-analysis. Agronomy. 2021;11(3):433.

    Article  Google Scholar 

  21. Mousavi SR, Sarmadian F, Omid M, Bogaert P. Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semiarid region of Iran. Measurement. 2022;201: 111706.

    Article  Google Scholar 

  22. Tang X, Xia M, Pérez-Cruzado C, Guan F, Fan S. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Sci Rep. 2017;7(1):42640.

    Article  Google Scholar 

  23. Yao X, Yu K, Deng Y, Zeng Q, Lai Z, Liu J. Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena. 2019;178:189–98.

    Article  Google Scholar 

  24. Szatmári G, Pásztor L, Heuvelink GB. Estimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics. Geoderma. 2021;403:115356.

    Article  Google Scholar 

  25. Wang S, Zhuang Q, Jia S, Jin X, Wang Q. Spatial variations of soil organic carbon stocks in a coastal hilly area of China. Geoderma. 2018;314:8–19. https://doi.org/10.1016/j.geoderma.2017.10.052.

    Article  Google Scholar 

  26. Nguemezi C, Tematio P, Silatsa FB, Yemefack M. Spatial variation and temporal decline (1985–2017) of soil organic carbon stocks (SOCS) in relation to land use types in Tombel area, South-West Cameroon. Soil Tillage Res. 2021;213:105114.

    Article  Google Scholar 

  27. Zeraatpisheh M, Garosi Y, Owliaie HR, Ayoubi S, Taghizadeh-Mehrjardi R, Scholten T, Xu M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: a comparison of a group of environmental covariates. Catena. 2022;208:105723.

    Article  Google Scholar 

  28. Odebiri O, Mutanga O, Odindi J, Naicker R, Slotow R, Mngadi M. Evaluation of projected soil organic carbon stocks under future climate and land cover changes in South Africa using a deep learning approach. J Environ Manag. 2023;330:117127.

    Article  Google Scholar 

  29. Martin MP, Orton TG, Lacarce E, Meersmans J, Saby NPA, Paroissien JB, Arrouays D. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma. 2014;223:97–107.

    Article  Google Scholar 

  30. Bae J, Ryu Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan. 2015;136(April):57–67.

    Article  Google Scholar 

  31. Shifaw E, Sha J, Li X, Jiali S, Bao Z. Remote sensing and GIS-based analysis of urban dynamics and modelling of its drivers, the case of Pingtan, China. Environ Dev Sustain. 2018;22(3):2159–86.

    Article  Google Scholar 

  32. Obeidat M, Awawdeh M, Lababneh A. Assessment of land use/land cover change and its environmental impacts using remote sensing and GIS techniques, Yarmouk River Basin, north Jordan. Arab J Geosci. 2019;12(22):685.

    Article  Google Scholar 

  33. Fathizad H, Taghizadeh-Mehrjardi R, Hakimzadeh Ardakani MA, Zeraatpisheh M, Heung B, Scholten T. Spatiotemporal assessment of soil organic carbon change using machine-learning in arid regions. Agronomy. 2022;12(3):628.

    Article  Google Scholar 

  34. Yan Y, Zhang C, Hu Y, Kuang W. Urban land-cover change and its impact on the ecosystem carbon storage in a Dryland city. Remote Sens. 2015;8(1):6.

    Article  Google Scholar 

  35. Taghizadeh-Mehrjardi R, Neupane R, Sood K, Kumar S. Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA. Carbon Manag. 2017;8(3):277–91.

    Article  Google Scholar 

  36. Nurmiaty, Sumbangan B, Samsu A. GIS-based modelling of land use dynamics using cellular automata and Markov chain. J Environ Earth Sci. 2014;4(4):2224–3216.

    Google Scholar 

  37. Huong NTT, Phuong NTT. Land use/land cover change prediction in Dak Nong Province based on remote sensing and Markov Chain Model and Cellular Automata. J Vietnam Environ. 2018;9(3):132–40.

    Article  Google Scholar 

  38. Baker WL. A review of models of landscape change. Landsc Ecol. 1989;2:111–33. https://doi.org/10.1007/BF00137155.

    Article  Google Scholar 

  39. Muller MR, Middleton J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc Ecol. 1994;9:151–7.

    Article  Google Scholar 

  40. Sharjeel M, Zahir A, Mateeul H, Badar MG. Monitoring and predicting land use/landcover change using an integrated Markov chain & multilayer perceptron models: a case study of Sahiwal Tehsil. J GeoSpace Sci. 2016;1(2):43–59.

    Google Scholar 

  41. Hazhir K, Javad J, Jabbar K, Parisa A. Monitoring and prediction of land use/land cover changes using CA-Markov model: a case study of Ravansar County in Iran. Arab J Geosci. 2018;11(592):1–9.

    Google Scholar 

  42. Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M, Mosavi A, Scholten T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020;12(14):2234.

    Article  Google Scholar 

  43. Kılıc M, Gundoğan R, Gunal H, Cemek B. Accuracy assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon. PLoS One. 2022;17(5):e0268658.

    Article  Google Scholar 

  44. Pouyat RV, Yesilonis ID, Nowak DJ. Carbon storage by urbain soils in the United States. J Environ Qual. 2006;35(4):1566–75.

    Article  Google Scholar 

  45. Hutyra LR, Yoon B, Alberti M. Terrestrial carbon stocks across a gradient of urbanisation: a study of the Seattle, WA region. Glob Change Biol. 2011;17(2):783–97.

    Article  Google Scholar 

  46. Kaye JP, McCulley RI, Burke IC. Carbon Fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native, and agricultural ecosystems. Glob Change Biol. 2005;11(4):575–87.

    Article  Google Scholar 

  47. Mestdagh I, Sleutel S, Lootens P, Van Cleemput O, Carlier L. Soil organic carbon stocks in verges and urban areas of Flanders, Belgium. Grass Forage Sci. 2005;60(2):151–6.

    Article  Google Scholar 

  48. Edmonds JL, O’Sullivan OS, Inger R, Potter J, McHugh N, Gaston KJ, Leake JR, Bond-Lamberty B. Urban tree effects on soil organic carbon. PLoS One. 2014;9(7): e101872.

    Article  Google Scholar 

  49. Ministry of Agriculture, Fisheries, Rural, Development, Water and Forests.: Green Moroccan Plan. 2008.

  50. Townshend JR, Masek JG, Huang C, Vermote EF, Gao F, Channan S, Sexton JO, Feng M, Narasimhan R, Kim D, Song K, Song D, Song XP, Noojipady P, Tan B, Hansen MC, Li M, Wolfe RE. Global characterisation and monitoring of forest cover using Landsat data: opportunities and challenges. Int J Digit Earth. 2012;5(5):373–97.

    Article  Google Scholar 

  51. Gadal, S.; Oukhattar, M.; Keller, C. and Houmma, I.: Spatio-temporal modelling of relationship between organic carbon content and land use using deep learning approach and several co-variables: application to the soils of the Beni Mellal in Morocco. In: Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management, 2023; pp. 15-26. https://doi.org/10.5220/0011723000003473.

  52. Ennaji W, Barakat A, Karaoui I, El Baghdadi M, Arioua A. Remote sensing approach to assess salt-affected soils in the north-east part of Tadla plain, Morocco. Geol Ecol Landsc. 2018;2(1):22–8.

    Google Scholar 

  53. Aghzar N, Berdai H, Bellouti A, Soud B. Ground water nitrate pollution in Tadla (Morocco). J Water Sci Rev Sci Educ. 2002;15(2):459–92.

    Google Scholar 

  54. Hunter EL, Power CH. An assessment of two classification methods for mapping Thames Estuary intertidal habitats using CASI data. Int J Remote Sens. 2002;23(15):2989–3008.

    Article  Google Scholar 

  55. Girouard G, Bannari A, El-Harti A, Desrochers A. Validated spectral angle mapper algorithm for geological mapping: comparative study between quickbird and Landsat-TM, geo-imagery bridging continents Istanbul, Turkey. Environ Sci Math Geol. 2004;12(23):599–604.

    Google Scholar 

  56. Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro PJ, Goetz AFH. The spectral image processing system (SIPS)-interactive visualisation and analysis of imaging spectrometer data. Remote Sens Environ. 1993;44(2–3):145–63.

    Article  Google Scholar 

  57. Adams WA. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Eur J Soil Sci. 1973;24:10–7.

    Article  Google Scholar 

  58. Cresswell HP, Hamilton GJ, et al. Bulk density and pore space relations. In: McKenzie NJ, et al., editors. Soil physical measurement and interpretation for land evaluation. Australian Soil and Land Survey Handbook. CSIRO; 2002. p. 35–58.

    Google Scholar 

  59. What is soil organic carbon? Agriculture and Food. 2022. https://www.agric.wa.gov.au/measuring-and-assessing-soils/what-soil-organic-carbon.

  60. Total Organic Carbon, Fact Sheets. soilquality.org.au. https://www.soilquality.org.au/factsheets/organic-carbon.

  61. Schneider F, Poeplau C, Don A. Predicting ecosystem responses by data-driven reciprocal modelling. Glob Change Biol. 2021;27(21):5670–9. https://doi.org/10.1111/gcb.15817.

    Article  Google Scholar 

  62. Lugato E, Panagos P, Bampa F, Jones A, Montanarella L. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob Change Biol. 2014;20(1):313–26.

    Article  Google Scholar 

  63. FAO. Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome, FAO. 170 pp. Licence: CC BY-NC-SA 3.0 IGO. 2019.

  64. Pacini L, Arbelet P, Chen S, Bacq-Labreuil A, Calvaruso C, Schneider F, Arrouays D, Saby NPA, Cécillon L, Barré P. A new approach to estimate soil organic carbon content targets in European croplands topsoils. Sci Total Environ. 2023;900:165811. https://doi.org/10.1016/j.scitotenv.2023.165811.

    Article  Google Scholar 

  65. Garcia-Gaines, A., Frankenstein, S.: USCS and the USDA soil classification system. In: US army corps of engineers. 2015; pp. 46

  66. Gidey E, Dikinya O, Sebego R. Cellular automata and Markov Chain (CA-Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model Earth Syst Environ. 2017;3:1245–62.

    Article  Google Scholar 

  67. Gadal, S., Oukhattar, M., Otobo, S.O.: Multitemporal recognition of built-up area and land cover changes using machine learning approach in the Metropolis of Aix-Marseille-Provence in France. In: 2023 Joint Urban Remote Sensing Event (JURSE), Heraklion, Greece. 2023; pp. 1-4. https://doi.org/10.1109/JURSE57346.2023.10144184.

  68. Rwanga S, Ndambuki J. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int J Geosci. 2017;8:611–22. https://doi.org/10.4236/ijg.2017.84033.

    Article  Google Scholar 

  69. Emamgholizadeh S, Esmaeilbeiki F, Babak M, Zarehaghi D, Maroufpoor E, Rezaei H. Estimation of the organic carbon content by the pattern recognition method. Commun Soil Sci Plant Anal. 2018;49(17):2143–54.

    Article  Google Scholar 

  70. Muchena R. Estimating soil carbon stocks in a dry Miombo ecosystem using remote sensing. For Res Open Access. 2017. https://doi.org/10.4172/2168-9776.1000198.

    Article  Google Scholar 

  71. Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Wang M. Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep. 2016;6(1):29987.

    Article  Google Scholar 

  72. Bogunovic I, Viduka A, Magdic I, Telak LJ, Francos M, Pereira P. Agricultural and forestland-use impact on soil properties in Zagreb periurban area (Croatia). Agronomy. 2020;10(9):1331.

    Article  Google Scholar 

  73. Laganière J, Déni AA, David P. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol. 2010;16(1):439–53.

    Article  Google Scholar 

  74. Ghimire P, Bhatta B, Pokhrel B, Kafle G, Paudel P. Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal. SAARC J Agric. 2019;16:13–23. https://doi.org/10.3329/sja.v16i2.40255.

    Article  Google Scholar 

  75. Reicosky DC. Tillage-induced CO2 emissions and carbon sequestration: effect of secondary tillage and compaction. Conserv Agric Environ Farmers Exp Innov Socioecon Policy. 2003. https://doi.org/10.1007/978-94-017-1143-2_35.

    Article  Google Scholar 

  76. Haddaway NR, Hedlund K, Jackson LE, et al. How does tillage intensity affect soil organic carbon? A systematic review. Environ Evid. 2017;6:30. https://doi.org/10.1186/s13750-017-0108-9.

    Article  Google Scholar 

  77. Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Rao CS, Freeman OW II. Soil organic carbon dynamics: impact of land use changes and management practices: A review. Adv Agron. 2019;156:1–107.

    Article  Google Scholar 

  78. Xiong X, Grunwald S, Myers DB, Ross CW, Harris WG, Comerford NB. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci Total Environ. 2014;493:974–82.

    Article  Google Scholar 

  79. Buraka T, Elias E, Lelago A. Soil organic carbon and its’ stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon. 2022;8(8):e10261.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Faculty of Science and Technology of Béni-Mellal, for having given us the means (transport and soil analysis laboratory) to carry out this work. We also like to thank Professor A. Barakat for his advice during the realisation of this study. Furthermore, we acknowledge support provided by the ECCOREV TOODS, MAMP-CNRS SOM, and CNES TOSCA TRISHNA projects.

Funding

This work was supported by the ECCOREV TOODS, MAMP-CNRS SOM and CNES TOSCA TRISHNA projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Oukhattar.

Ethics declarations

Conflict of interest

All authors contributed to the production of the manuscript and declare no conflict of interest.

Consent to Publication

This manuscript is an extension of the proceedings of GISTAM 2023: 9th International Conference on Theory, Applications and Management of Geographic Information Systems. It has not been submitted to, nor is it under review in, any other journal or publication venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances on Geographical Information Systems Theory, Applications and Management” guest edited by Lemonia Ragia, Cédric Grueau and Armanda Rodrigues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadal, S., Oukhattar, M., Keller, C. et al. Spatiotemporal Modelling of Soil Organic Carbon Stocks in a Semi-Arid Region Using a Multilayer Perceptron Algorithm. SN COMPUT. SCI. 5, 561 (2024). https://doi.org/10.1007/s42979-024-02872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02872-8

Keywords

Navigation