Skip to main content
Log in

Secure Color Image Encryption Using 9D Hyperchaotic System, Fibonacci Matrices of order m and Symplectic Quaternion-Fractional Hahn Moments

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This work presents a novel scheme for encrypting color images. It leverages quaternion algebra, quaternion discrete fractional Hahn moments (QDFHM), Fibonacci matrices of order m, and a 9D complex chaotic system. The proposed scheme consists of two fundamental phases. The first phase leverages the capabilities of the 9D complex chaotic system with quaternions to generate a sequence of random numbers, which are used in the confusion process of the color image pixels, breaking the correlation between adjacent pixels. The second phase, diffusion, bolsters our scheme’s resistance to statistical attacks. To achieve this, the original image is subdivided into 2 × 2 blocks. Each block is then multiplied by a Fibonacci matrix of order m. Finally, for enhanced security, a proposed symplectic form of quaternion discrete fractional Hahn moments (QDFHM) transform is applied to these modified blocks, yielding the encrypted color image. The conducted simulation in this study rigorously evaluates the proposed algorithm’s validity and security by subjecting it to various attack scenarios and statistical analyses. These include correlation coefficient analysis, differential attacks, key-space analysis, entropy analysis, key sensitivity analysis, noise robustness, and data occlusion. The comprehensive assessments demonstrate both high security and outstanding efficiency in color image encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lee I-H, Cho M. Double random phase encryption based orthogonal encoding technique for color images. J Opt Soc Korea. 2014;18(2):129–33.

    Article  Google Scholar 

  2. Huang H, Yang S. Colour image encryption based on logistic mapping and double random-phase encoding. IET Image Proc. 2017;11(4):211–6.

    Article  Google Scholar 

  3. Chen B, Qi X, Sun X, Shi Y-Q. Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection. J Vis Commun Image Represent. 2017;49:283–90.

    Article  Google Scholar 

  4. Subakan ÖN, Vemuri BC. A quaternion framework for color image smoothing and segmentation. Int J Comput Vis. 2011;91(3):233–50.

    Article  MathSciNet  Google Scholar 

  5. Yu C, Li J, Li X, Ren X, Gupta BB. Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl. 2018;77:4585–608.

    Article  Google Scholar 

  6. Xiao J, Cao J, Cheng J, Wen S, Zhang R, Zhong S. Novel inequalities to global Mittag–Leffler synchronization and stability analysis of fractional-order quaternion-valued neural networks. IEEE Trans Neural Netw Learn Syst. 2020;32(8):3700–9.

    Article  MathSciNet  Google Scholar 

  7. Wang C, Wang X, Li Y, Xia Z, Zhang C. Quaternion polar harmonic Fourier moments for color images. Inf Sci. 2018;450:141–56.

    Article  MathSciNet  Google Scholar 

  8. Daoui A, Karmouni H, Yamni M, Sayyouri M, Qjidaa H. On computational aspects of high-order dual Hahn moments. Pattern Recogn. 2022;127: 108596.

    Article  Google Scholar 

  9. Shi J, Liu X, Zhao Y, Shi S, Sha X, Zhang Q. Filter design for constrained signal reconstruction in linear canonical transform domain. IEEE Trans Signal Process. 2018;66(24):6534–48.

    Article  MathSciNet  Google Scholar 

  10. Yamni M, et al. An efficient watermarking algorithm for digital audio data in security applications. Sci Rep. 2023;13(1):18432.

    Article  Google Scholar 

  11. Yamni M, et al. A powerful zero-watermarking algorithm for copyright protection of color images based on quaternion radial fractional Hahn moments and artificial bee colony algorithm. Circuits Syst Signal Process. 2023;42:1–32.

    Article  Google Scholar 

  12. Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H, Jamil MO. LabVIEW implementation of bio-signal zero-watermarking using Tchebichef moments. In: International Conference on Digital Technologies and Applications, Springer, 2023, pp. 531–539.

  13. Yamni M, Karmouni H, Daoui A, El Ogri O, Sayyouri M, Qjidaa H. Blind image zero-watermarking algorithm based on radial Krawtchouk moments and chaotic system. In: 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 2020; pp. 1–7, https://doi.org/10.1109/ISCV49265.2020.9204071.

  14. Daoui A, Yamni M, Chelloug SA, Wani MA, El-Latif AAA. Efficient image encryption scheme using novel 1D multiparametric dynamical tent map and parallel computing. Mathematics. 2023;11(7):1589.

    Article  Google Scholar 

  15. Xiao B, Li L, Li Y, Li W, Wang G. Image analysis by fractional-order orthogonal moments. Inf Sci. 2017;382:135–49.

    Article  Google Scholar 

  16. Zhang, Li Z, Liu Y. Fractional orthogonal Fourier–Mellin moments for pattern recognition. In: Pattern Recognition: 7th Chinese Conference, CCPR 2016, Chengdu, China, November 5–7, 2016, Proceedings, Part I 7, Springer, 2016; pp. 766–778.

  17. Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image-based diagnosis of COVID-19. PLoS ONE. 2020;15(6): e0235187.

    Article  Google Scholar 

  18. Kaur P, Pannu HS, Malhi AK. Plant disease recognition using fractional-order Zernike moments and SVM classifier. Neural Comput Appl. 2019;31:8749–68.

    Article  Google Scholar 

  19. Chen B, Yu M, Su Q, Shim HJ, Shi Y-Q. Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access. 2018;6:56637–46.

    Article  Google Scholar 

  20. Karmouni H et al. Image reconstruction by Krawtchouk moments via digital filter. In: 2017 Intelligent Systems and Computer Vision (ISCV), IEEE, 2017, pp. 1–7.

  21. Rahmalan H, Abu NA, Wong SL. Using tchebichef moment for fast and efficient image compression. Pattern Recognit Image Anal. 2010;20:505–12.

    Article  Google Scholar 

  22. Bin TJ, Lei A, Jiwen C, Wenjing K, Dandan L. Subpixel edge location based on orthogonal Fourier–Mellin moments. Image Vis Comput. 2008;26(4):563–9.

    Article  Google Scholar 

  23. Yamni M, et al. Fast and accurate computation of 3D Charlier moment invariants for 3D image classification. Circuits Syst Signal Process. 2021;40(12):6193–223.

    Article  Google Scholar 

  24. Xiao B, Shi W, Li W. Image encryption method based on multi-order fractional discrete Chebyshev transform and generated sequence. J Commun. 2018;39(005):1–10.

    Google Scholar 

  25. Xiao B, Luo J, Bi X, Li W, Chen B. Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking. Inf Sci. 2020;516:545–59.

    Article  MathSciNet  Google Scholar 

  26. Yamni M, Karmouni H, Sayyouri M, Qjidaa H. Quaternion Cartesian fractional Hahn moments for color image analysis. Multimed Tools Appl. 2022;81:1–22.

    Article  Google Scholar 

  27. Liu G, Kadir A, Liu H. Color pathological image encryption scheme with S-boxes generated by complex chaotic system and environmental noise. Neural Comput Appl. 2016;27(3):687–97. https://doi.org/10.1007/s00521-015-1888-x.

    Article  Google Scholar 

  28. Chai X, Fu X, Gan Z, Lu Y, Chen Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 2019;155:44–62.

    Article  Google Scholar 

  29. Joshi M, Shakher C, Singh K. Logarithms-based RGB image encryption in the fractional Fourier domain: a non-linear approach. Opt Lasers Eng. 2009;47(6):721–7.

    Article  Google Scholar 

  30. Liu Z, Dai J, Sun X, Liu S. Color image encryption by using the rotation of color vector in Hartley transform domains. Opt Lasers Eng. 2010;48(7–8):800–5.

    Article  Google Scholar 

  31. Liu Z, Zhang Y, Liu W, Meng F, Wu Q, Liu S. Optical color image hiding scheme based on chaotic mapping and Hartley transform. Opt Lasers Eng. 2013;51(8):967–72.

    Article  Google Scholar 

  32. Daoui A, et al. Biomedical Multimedia encryption by fractional-order Meixner polynomials map and quaternion fractional-order Meixner moments. IEEE Access. 2022;10:102599–617.

    Article  Google Scholar 

  33. Tahiri MA, et al. New color image encryption using hybrid optimization algorithm and Krawtchouk fractional transformations. Vis Comput. 2023;39(12):6395–420.

    Article  Google Scholar 

  34. Wu X, Zhu B, Hu Y, Ran Y. A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps. IEEE Access. 2017;5:6429–36.

    Google Scholar 

  35. Yang F, Mou J, Sun K, Chu R. Lossless image compression-encryption algorithm based on BP neural network and chaotic system. Multimed Tools Appl. 2020;79:19963–92.

    Article  Google Scholar 

  36. Zhang Q, Han J. A novel color image encryption algorithm based on image hashing, 6D hyperchaotic and DNA coding. Multimed Tools Appl. 2021;80:13841–64.

    Article  Google Scholar 

  37. Hosny KM, Kamal ST, Darwish MM. Novel encryption for color images using fractional-order hyperchaotic system. J Ambient Intell Humaniz Comput. 2022;13(2):973–88.

    Article  Google Scholar 

  38. Liu Z, Wu C, Wang J, Hu Y. A color image encryption using dynamic DNA and 4-D memristive hyper-chaos. IEEE Access. 2019;7:78367–78.

    Article  Google Scholar 

  39. Selvi CT, Amudha J, Sudhakar R. Medical image encryption and compression by adaptive sigma filterized synorr certificateless signcryptive Levenshtein entropy-coding-based deep neural learning. Multimed Syst. 2021;27:1–16.

    Article  Google Scholar 

  40. Wang X, et al. A new V-net convolutional neural network based on four-dimensional hyperchaotic system for medical image encryption. Secur Commun Netw. 2022;2022:1–14.

    Article  Google Scholar 

  41. Lai Q, Wan Z, Zhang H, Chen G. Design and analysis of multiscroll memristive Hopfield neural network with adjustable memductance and application to image encryption. IEEE Trans Neural Netw Learn Syst. 2022;34:7834–7.

    Google Scholar 

  42. Lai Q, Chen Z. Grid-scroll memristive chaotic system with application to image encryption. Chaos, Solitons Fractals. 2023;170: 113341.

    Article  MathSciNet  Google Scholar 

  43. Lai Q, Liu Y. A cross-channel color image encryption algorithm using two-dimensional hyperchaotic map. Expert Syst Appl. 2023;223: 119923.

    Article  Google Scholar 

  44. Liu H, Liu J, Ma C. Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption. Multimed Tools Appl. 2023;82(16):23899–914.

    Article  Google Scholar 

  45. Liu H, Zhang Y, Kadir A, Xu Y. Image encryption using complex hyper chaotic system by injecting impulse into parameters. Appl Math Comput. 2019;360:83–93.

    MathSciNet  Google Scholar 

  46. Lai Q, Wan Z, Kuate PDK. Generating grid multi-scroll attractors in memristive neural networks. IEEE Trans Circuits Syst I Regul Pap. 2022;70(3):1324–36.

    Article  Google Scholar 

  47. Lai Q, Yang L, Chen G. Design and performance analysis of discrete memristive hyperchaotic systems with stuffed cube attractors and ultraboosting behaviors. IEEE Trans Indus Electron. 2023;71:7819–28.

    Article  Google Scholar 

  48. Nishchal NK. Optical cryptosystems. IOP Publishing; 2019.

    Book  Google Scholar 

  49. Kumar P, Nishchal NK, Alfalou A. Color image encryption using vectorial light field through a compact optical set-up. J Opt. 2022;24(6): 064017.

    Article  Google Scholar 

  50. Shikder A, Nishchal NK. Image encryption using binary polarization states of light beam. Sci Rep. 2023;13(1):14028.

    Article  Google Scholar 

  51. Rao SK, Nishchal NK, AlFalou A. Optical asymmetric image encryption using vectorial light field encoding. Opt Commun. 2024;554: 130097.

    Article  Google Scholar 

  52. Baliyan M, Kumar P, Nishchal N. Image encryption through dual-pass modulated azimuthally polarized vector field. IEEE Photon Technol Lett. 2024. https://doi.org/10.1109/LPT.2023.3348935.

    Article  Google Scholar 

  53. Shikder A, Rao SK, Kumar P, Nishchal NK. Binary image encryption with a QR code-encoded optical beam having an array of vortices. JOSA A. 2024;41(3):A73–82.

    Article  Google Scholar 

  54. Zhang F, Huang Z, Kou L, Li Y, Cao M, Ma F. Data encryption based on a 9D complex chaotic system with quaternion for smart grid. Chin Phys B. 2023;32(1): 010502.

    Article  Google Scholar 

  55. Hashimoto K, Murata K, Tanahashi N, Watanabe R. Bound on energy dependence of chaos. Phys Rev D. 2022;106(12): 126010.

    Article  MathSciNet  Google Scholar 

  56. Halıcı S, Batu T. ON THE FIBONACCI Q-MATRICES OF THE ORDER m. Acta Universitatis Apulensis, 2009.

  57. Hamilton WR. Researches respecting quaternions. First series. Trans R Ir Acad. 1846;21:199–296.

    Google Scholar 

  58. Hamilton WR. Researches respecting quaternions. First series (1843). Math Pap Sir William Rowan Hamilton. 1967;3:159–226.

    Google Scholar 

  59. Ell TA, Sangwine SJ. Hypercomplex Fourier transforms of color images. IEEE Trans Image Process. 2006;16(1):22–35.

    Article  MathSciNet  Google Scholar 

  60. Ell TA. Hypercomplex spectral transformations. PhD thesis, University of Minnesota, USA, 1992.

  61. Daoui A, et al. Color stereo image encryption and local zero-watermarking schemes using octonion Hahn moments and modified Henon map. J King Saud Univ-Comput Inform Sci. 2022;34(10):8927–54.

    Google Scholar 

  62. Zhang M, Tong X. A new chaotic map based image encryption schemes for several image formats. J Syst Softw. 2014;98:140–54.

    Article  Google Scholar 

  63. Liu Z, Xu L, Dai J, Liu S. Image encryption by using local random phase encoding in fractional Fourier transform domains. Optik. 2012;123(5):428–32.

    Article  Google Scholar 

  64. Karmouni H, Sayyouri M, Qjidaa H. A novel image encryption method based on fractional discrete Meixner moments. Opt Lasers Eng. 2021;137: 106346.

    Article  Google Scholar 

  65. Xuejing K, Zihui G. A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process: Image Commun. 2020;80: 115670.

    Google Scholar 

  66. Zhang Y-Q, He Y, Li P, Wang X-Y. A new color image encryption scheme based on 2DNLCML system and genetic operations. Opt Lasers Eng. 2020;128: 106040.

    Article  Google Scholar 

  67. Shannon CE. A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev. 2001;5(1):3–55.

    Article  MathSciNet  Google Scholar 

  68. Ping P, Fan J, Mao Y, Xu F, Gao J. A chaos based image encryption scheme using digit-level permutation and block diffusion. IEEE Access. 2018;6:67581–93.

    Article  Google Scholar 

  69. Alvarez G, Li S. Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos. 2006;16(08):2129–51. https://doi.org/10.1142/S0218127406015970.

    Article  MathSciNet  Google Scholar 

  70. Nematzadeh H, Enayatifar R, Motameni H, Guimarães FG, Coelho VN. Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices. Opt Lasers Eng. 2018;110:24–32.

    Article  Google Scholar 

  71. Niyat AY, Moattar MH, Torshiz MN. Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt Lasers Eng. 2017;90:225–37.

    Article  Google Scholar 

  72. Xu M, Tian Z. A novel image encryption algorithm based on self-orthogonal Latin squares. Optik. 2018;171:891–903.

    Article  Google Scholar 

  73. Wang X-Y, Li Z-M. A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng. 2019;115:107–18.

    Article  Google Scholar 

  74. Pareek NK, Patidar V, Sud KK. Cryptography using multiple one-dimensional chaotic maps. Commun Nonlinear Sci Numer Simul. 2005;10(7):715–23. https://doi.org/10.1016/j.cnsns.2004.03.006.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the reviewers for dedicating their time and expertise to reviewing the manuscript. We deeply appreciate their valuable comments and suggestions, which have significantly enhanced the quality of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Chaker.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaker, R., Boua, A. Secure Color Image Encryption Using 9D Hyperchaotic System, Fibonacci Matrices of order m and Symplectic Quaternion-Fractional Hahn Moments. SN COMPUT. SCI. 5, 495 (2024). https://doi.org/10.1007/s42979-024-02862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02862-w

Keywords

Navigation