Skip to main content
Log in

Optimized Support Vector Machine Using Whale Optimization Algorithm for Acute Lymphoblastic Leukemia Detection from Microscopic Blood Smear Images

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Acute Lymphoblastic Leukemia (ALL) is a malignancy of White Blood Cells (WBC) originating from lymphoid cells. Hematologist detects ALL through manual inspection of Microscopic Blood Smear (MBS) images and employs standard diagnostic devices like flow cytometry. But, the manual evaluation by Hematologist is prone to diagnostic error, costly, and labor-intensive. In this paper, a computer-aided ALL detection scheme using a Whale Optimization Algorithm-based Support Vector Machine (WOA-SVM) has been proposed. The major challenges are WBC segmentation, discriminant feature extraction, and WBC classification (normal and ALL). Here, CIEL*a*b color-based K-means clustering with a marker-controlled watershed is utilized for WBC segmentation. 15-dimensional features obtained by combining the proposed features and existing features have been used to specify the feature set. The proposed features are 2D-Discrete Orthonormal S-Transform with weighted Principal Component Analysis, the sum of rotation invariant Local Binary Pattern with a uniform pattern, and the mean intensity of Cyan of the CMYK color model. Further, an ANOVA test has been performed to check the significant features. The features are reorganized through descending order of F-values and their covariance structure is removed using Zero Phase Component Analysis whitening. Moreover, the performance of WOA-SVM is evaluated using the feature set and established a promising result with 98.42% accuracy on ALL-IDB1 dataset. The experimental outcomes demonstrate the superiority of the proposed methodology over other comparing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Dataset utilized for the proposed study available at https://scotti.di.unimi.it/all.

References

  1. Cancer-World Health Organization. 2020. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 8 Dec 2022.

  2. Facts and Statistics Overview, Lymphoma and Leukemia Society. 2021. https://www.lls.org/facts-and-statistics/facts-and-statistics-overview. Accessed 23 Novr 2022.

  3. Blood Cancer-A Growing Health Burden for India, Medanta. 2019. https://www.medanta.org/patient-education-blog/blood-cancer---a-growing-health-burden-for-india/. Accessed 8 Dec 2022.

  4. India fact sheets-Globocan. 2020. https://gco.iarc.fr/today/data/factsheets/populations/356-india-fact-sheets.pdf. Accessed 8 Dec 2022.

  5. Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med. 2014;62(3):179–91. https://doi.org/10.1016/j.artmed.2014.09.002.

    Article  Google Scholar 

  6. Singhal V, Singh P. Texture features for the detection of acute lymphoblastic leukemia. In: Proceedings of International Conference on ICT for Sustainable Development. 2016. pp. 535–543. https://doi.org/10.1007/978-981-10-0135-2_52

  7. Mishra S, Majhi B, Sa PK. GLRLM-Based feature extraction for acute lymphoblastic leukemia (ALL) Detection. In: Sa PK, Bakshi S, Hatzilygeroudis IK, Sahoo MN, editors. Recent findings in intelligent computing techniques advances in intelligent systems and computing. Berlin: Springer; 2018. p. 399–407. https://doi.org/10.1007/978-981-10-8636-6_41.

    Chapter  Google Scholar 

  8. Moshavash Z, Danyali H, Helfroush MS. An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging. 2018;31:702–17. https://doi.org/10.1007/s10278-018-0074-y.

    Article  Google Scholar 

  9. Jothi G, Inbarani HH, Azar AT, Devi KR. Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput Appl. 2019;31:5175–94. https://doi.org/10.1007/s00521-018-3359-7.

    Article  Google Scholar 

  10. Das PK, Jadoun P, Meher S. Detection and classification of acute lymphocytic leukemia. In: 2020 IEEE-HYDCON. Piscataway: IEEE; 2020. p. 1–5. https://doi.org/10.1109/HYDCON48903.2020.9242745.

    Chapter  Google Scholar 

  11. Muntasa A, Yusuf M. Multi distance and angle models of the gray level co-occurrence matrix (Glcm) to extract the acute lymphoblastic leukemia (All) images. Int J Intell Eng Syst. 2021. https://doi.org/10.22266/ijies2021.1231.32.

    Article  Google Scholar 

  12. Shafique S, Tehsin S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat. 2018. https://doi.org/10.1177/1533033818802789.

    Article  Google Scholar 

  13. Thanh TT, Vununu C, Atoev S, Lee SH, Kwon KR. Leukemia blood cell image classification using convolutional neural network. Int J Comput Theory Eng. 2018;10(2):54–8. https://doi.org/10.7763/IJCTE.2018.V10.1198.

    Article  Google Scholar 

  14. Ahmed N, Yigit A, Isik Z, Alpkocak A. Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics. 2019. https://doi.org/10.3390/diagnostics9030104.

    Article  Google Scholar 

  15. Prellberg J, Kramer O. Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. In: Gupta A, Gupta R, editors. ISBI 2019 C-NMC Challenge: classification in cancer cell imaging. Lecture notes in bioengineering. Berlin: Springer; 2019. p. 53–61. https://doi.org/10.1007/978-981-15-0798-4_6.

    Chapter  Google Scholar 

  16. Shahin AI, Guo Y, Amin KM, Sharawi AA. White blood cells identification system based on convolutional deep neural learning networks. Comput Methods Programs Biomed. 2019;168:69–80. https://doi.org/10.1016/j.cmpb.2017.11.015.

    Article  Google Scholar 

  17. Sahlol AT, Kollmannsberger P, Ewees AA. Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci Rep. 2020;10(1):2536. https://doi.org/10.1038/s41598-020-59215-9.

    Article  Google Scholar 

  18. Kumar D, Jain N, Khurana A, Mittal S, Satapathy SC, Senkerik R, Hemanth JD. Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks. IEEE Access. 2020;8:142521–31. https://doi.org/10.1109/ACCESS.2020.3012292.

    Article  Google Scholar 

  19. Das PK, Meher S. Transfer learning-based automatic detection of acute lymphocytic leukemia. In: Meher S, editor. 2021 National Conference on Communications (NCC). Piscataway: IEEE; 2021. p. 1–6. https://doi.org/10.1109/NCC52529.2021.9530010.

    Chapter  Google Scholar 

  20. Renuka TV, Surekha B. Acute-lymphoblastic leukemia detection through deep transfer learning approach of neural network. In: Patil VH, Dey N, Mahalle PN, Pathan MS, Kimbahune VV, editors. Proceeding of First Doctoral Symposium on Natural Computing Research. Lecture Notes in Networks and Systems. Singapore: Springer Singapore; 2021. https://doi.org/10.1007/978-981-33-4073-2_17.

    Chapter  Google Scholar 

  21. Khandekar R, Shastry P, Jaishankar S, Faust O, Sampathila N. Automated blast cell detection for acute lymphoblastic leukemia diagnosis. Biomed Signal Process Control. 2021;68:102690. https://doi.org/10.1016/j.bspc.2021.102690.

    Article  Google Scholar 

  22. Anilkumar KK, Manoj VJ, Sagi TM. Automated detection of b cell and t cell acute lymphoblastic leukaemia using deep learning. Irbm. 2022;43(5):405–13. https://doi.org/10.1016/j.irbm.2021.05.005.

    Article  Google Scholar 

  23. Abhishek A, Jha RK, Sinha R, Jha K. Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed Signal Process Control. 2022;72:103341. https://doi.org/10.1016/j.bspc.2021.103341.

    Article  Google Scholar 

  24. Labati RD, Piuri V, Scotti F. All-IDB: The acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE international conference on image processing, IEEE. 2011. pp. 2045–2048.

  25. Hu JL, Deng JB, Sui MX. Color space conversion model from CMYK to LAB based on prism. In: 2009 IEEE International Conference on Granular Computing, IEEE. 2009. pp. 235–238. https://doi.org/10.1109/GRC.2009.5255123

  26. Jain AK. Data clustering: 50 years beyond K-means. Pattern Recogn Lett. 2010;31(8):651–66. https://doi.org/10.1016/j.patrec.2009.09.011.

    Article  Google Scholar 

  27. Agaian S, Madhukar M, Chronopoulos AT. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst J. 2014;8(3):995–1004. https://doi.org/10.1109/JSYST.2014.2308452.

    Article  Google Scholar 

  28. Jung C, Kim C. Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng. 2010;57(10):2600–4. https://doi.org/10.1109/TBME.2010.2060336.

    Article  Google Scholar 

  29. Devi SS, Sheikh SA, Talukdar A, Laskar RH. Malaria infected erythrocyte classification based on a hybrid classifier using microscopic images of thin blood smear. Multimed Tools and Appl. 2018;77:631–60. https://doi.org/10.1007/s11042-016-4264-7.

    Article  Google Scholar 

  30. Drabycz S, Stockwell RG, Mitchell JR. Image texture characterization using the discrete orthonormal S-transform. J Digit Imaging. 2009;22:696–708. https://doi.org/10.1007/s10278-008-9138-8.

    Article  Google Scholar 

  31. Berisha V, Krantsevich C, Hahn PR, Hahn S, Dasarathy G, Turaga P, Liss J. Digital medicine and the curse of dimensionality. NPJ Digit Med. 2021;4(1):153. https://doi.org/10.1038/s41746-021-00521-5.

    Article  Google Scholar 

  32. Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer; 2002. https://doi.org/10.1007/b98835.

    Book  Google Scholar 

  33. Hartung J, Knapp G, Sinha BK. Statistical meta-analysis with applications. 1st ed. Hoboken: John Wiley & Sons; 2008.

    Book  Google Scholar 

  34. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):971–87. https://doi.org/10.1109/TPAMI.2002.1017623.

    Article  Google Scholar 

  35. Galloway MM. Texture analysis using gray level run lengths. Comput Vision, Gr Image Process. 1975;4:172–9.

    Article  Google Scholar 

  36. Dash S, Senapati MR. Gray level run length matrix based on various illumination normalization techniques for texture classification. Evol Intel. 2021;14(2):217–26. https://doi.org/10.1007/s12065-018-0164-2.

    Article  Google Scholar 

  37. Ding H, Feng PM, Chen W, Lin H. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol BioSyst. 2014;10(8):2229–35. https://doi.org/10.1039/C4MB00316K.

    Article  Google Scholar 

  38. Kessy A, Lewin A, Strimmer K. Optimal whitening and decorrelation. Am Stat. 2018;72(4):309–14. https://doi.org/10.1080/00031305.2016.1277159.

    Article  MathSciNet  Google Scholar 

  39. Saikia R, Devi SS. White blood cell classification based on gray level co-occurrence matrix with zero phase component analysis approach. Procedia Comput Sci. 2023;218:1977–84. https://doi.org/10.1016/j.procs.2023.01.174.

    Article  Google Scholar 

  40. Hyvärinen A, Hurri J, Hoyer PO, Hyvärinen A, Hurri J, Hoyer PO. Principal components and whitening. Nat Image Stat Probab Approach Early Comput Vision. 2009. https://doi.org/10.1007/978-1-84882-491-1_5.

    Article  Google Scholar 

  41. Ala’M AZ, Faris H, Alqatawna JF, Hassonah MA. Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts. Knowl-Based Syst. 2018;153:91–104. https://doi.org/10.1016/j.knosys.2018.04.025.

    Article  Google Scholar 

  42. Jia X, Sun X, Zhang X. Breast cancer identification using machine learning. Math Probl Eng. 2022;2022:1–8. https://doi.org/10.1155/2022/8122895.

    Article  Google Scholar 

  43. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008.

    Article  Google Scholar 

  44. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85. https://doi.org/10.1080/00031305.1992.10475879.

    Article  MathSciNet  Google Scholar 

  45. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res. 2009;10(2):207–44.

    Google Scholar 

  46. Omranpour H, Ghidary SS. A heuristic supervised Euclidean data difference dimension reduction for KNN classifier and its application to visual place classification. Neural Comput Appl. 2016;27:1867–81. https://doi.org/10.1007/s00521-015-1979-8.

    Article  Google Scholar 

  47. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  48. Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc. 1998;2(2):121–67. https://doi.org/10.1023/A:1009715923555.

    Article  Google Scholar 

  49. Ahmad I, Hussain M, Alghamdi A. Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components. Neural Comput Appl. 2014;24:1671–82. https://doi.org/10.1007/s00521-013-1370-6.

    Article  Google Scholar 

  50. Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach 2nd edn. Prentice Hall Englewood Cliffs. 2003.

  51. Haykin S. Neural networks and learning machines. 3rd ed. London: Pearson; 2009.

    Google Scholar 

  52. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010. pp. 249–256.

  53. McLachlan GJ. Discriminant analysis and statistical pattern recognition. Hoboken: John Wiley & Sons; 2005.

    Google Scholar 

  54. Martinez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal Mach Intell. 2001;23(2):228–33. https://doi.org/10.1109/34.908974.

    Article  Google Scholar 

  55. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.

    Article  MathSciNet  Google Scholar 

  56. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans Syst, Man, Cybern, Part C (Appl Rev). 2011;42(4):463–84. https://doi.org/10.1109/TSMCC.2011.2161285.

    Article  Google Scholar 

  57. Yang XS, Deb S, Fong S. Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked Digital Technologies: Third International Conference. Berlin: Springer; 2011. p. 53–66. https://doi.org/10.1007/978-3-642-22185-9_6.

    Chapter  Google Scholar 

  58. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. 1st ed. Boston: Addison-Wesley Longman Publishing Co; 1989.

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed.

Corresponding author

Correspondence to Rabul Saikia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, R., Sarma, A. & Shuleenda Devi, S. Optimized Support Vector Machine Using Whale Optimization Algorithm for Acute Lymphoblastic Leukemia Detection from Microscopic Blood Smear Images. SN COMPUT. SCI. 5, 439 (2024). https://doi.org/10.1007/s42979-024-02822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02822-4

Keywords

Navigation