Skip to main content
Log in

Early Detection of Lung Cancer with Low-Dose CT Scan Using Artificial Intelligence: A Comprehensive Survey

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Lung cancer is generally caused by an abnormal expansion of cells in the lungs of people due to mutation. In the lungs, the smallest unit of cell growth is named lung nodules that vary from 5 to 25 mm in diameter. Finding lung nodules at an early time is crucial. Researchers have used numerous methods to detect lung nodules at earlier stage. These methods have their own advantages and restrictions. The extensive literature review concludes that Low Dose CT scan is one of the most successful way for early-stage pulmonary nodule detection. In this work, a critical analysis of different strategies for early identification of lung nodules has been discussed along with its current trends, performance metrics, and future challenges. This paper also included details of available data-sets. The aim of this study is to evaluate different approaches for employing LDCT images to identify lung cancer at initial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

N/A.

Code Availability

N/A.

References

  1. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 2017;7(9):170070.

    Article  Google Scholar 

  2. Midthun DE. Early detection of lung cancer. F1000Research. 2016;5.

  3. Devarapalli RM, Kalluri HK, Dondeti V. Lung cancer detection of CT lung images. Int J Recent Technol Eng. 2019;7(5S4):413–6.

    Google Scholar 

  4. Makaju S, Prasad P, Alsadoon A, Singh A, Elchouemi A. Lung cancer detection using CT scan images. Procedia Comput Sci. 2018;125:107–14.

    Article  Google Scholar 

  5. Kulkarni A, Panditrao A. Classification of lung cancer stages on CT scan images using image processing. In: 2014 IEEE international conference on advanced communications, control and computing technologies, Tamilnadu, India. IEEE; 2014. p. 1384–8.

  6. Thakral G, Gambhir S, Aneja N. Proposed methodology for early detection of lung cancer with low-dose CT scan using machine learning. In: 2022 international conference on machine learning, big data, cloud and parallel computing (COM-IT-CON), Faridabad, India, vol. 1. IEEE; 2022. p. 662–6.

  7. Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, Schroers-Martin J, Nabet BY, Chen B, Chaudhuri AA, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580(7802):245–51.

    Article  Google Scholar 

  8. Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S. Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. In: International conference on computer science, engineering and education applications. Berlin: Springer; 2018. p. 638–47.

  9. Diwakar M, Kumar M. A review on CT image noise and its denoising. Biomed Signal Process Control. 2018;42:73–88.

    Article  Google Scholar 

  10. Sagheer SVM, George SN. A review on medical image denoising algorithms. Biomed Signal Process Control. 2020;61: 102036.

    Article  Google Scholar 

  11. Wolterink JM, Leiner T, Viergever MA, Isˇgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    Article  Google Scholar 

  12. Zhang H, Han H, Liang Z, Hu Y, Liu Y, Moore W, Ma J, Lu H. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images. IEEE Trans Med Imaging. 2015;35(3):860–70.

    Article  Google Scholar 

  13. Vansteenkiste JF, Stroobants SS. Pet scan in lung cancer: current recommendations and innovation. J Thorac Oncol. 2006;1(1):71–3.

    Article  Google Scholar 

  14. Biederer J, Ohno Y, Hatabu H, Schiebler ML, van Beek EJ, Vogel-Claussen J, Kauczor H-U. Screening for lung cancer: does MRI have a role? Eur J Radiol. 2017;86:353–60.

    Article  Google Scholar 

  15. Khanna K, Gambhir S, Gambhir M. Current challenges in detection of Parkinson’s disease. J Crit Rev. 2020;7(18):1461–7.

    Google Scholar 

  16. Buizza G, Toma-Dasu I, Lazzeroni M, Paganelli C, Riboldi M, Chang Y, Smedby Ö, Wang C. Early tumor response prediction for lung cancer patients using novel longitudinal pattern features from sequential PET/CT image scans. Phys Med. 2018;54:21–9.

    Article  Google Scholar 

  17. Kirar BS, Ahmed G, Agrawal DK. Decomposition methods: a comparative analysis using entropy feature from fundus images. In: 2021 emerging trends in industry 4.0 (ETI 4.0). Chhattisgarh, India: IEEE; 2021. p. 1–7.

    Google Scholar 

  18. Muralidharan N, Gupta S, Prusty MR, Tripathy RK. Detection of covid19 from X-ray images using multiscale deep convolutional neural network. Appl Soft Comput. 2022;119: 108610.

    Article  Google Scholar 

  19. Chaudhary PK, Pachori RB. Automatic diagnosis of glaucoma using two-dimensional Fourier–Bessel series expansion based empirical wavelet transform. Biomed Signal Process Control. 2021;64: 102237.

    Article  Google Scholar 

  20. Neal Joshua ES, Bhattacharyya D, Chakkravarthy M, Byun Y-C. 3D CNN with visual insights for early detection of lung cancer using gradient-weighted class activation. J Healthc Eng. 2021;2021:6695518. https://doi.org/10.1155/2021/6695518

    Article  Google Scholar 

  21. Xie Y, Meng W-Y, Li R-Z, Wang Y-W, Qian X, Chan C, Yu Z-F, Fan X-X, Pan H-D, Xie C, et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol. 2021;14(1): 100907.

    Article  Google Scholar 

  22. Huang X, Lei Q, Xie T, Zhang Y, Hu Z, Zhou Q. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images. Knowl Based Syst. 2020;204: 106230.

    Article  Google Scholar 

  23. Xu X, Wang C, Guo J, Yang L, Bai H, Li W, Yi Z. DeepLN: a framework for automatic lung nodule detection using multi-resolution CT screening images. Knowl Based Syst. 2020;189: 105128.

    Article  Google Scholar 

  24. Cui S, Ming S, Lin Y, Chen F, Shen Q, Li H, Chen G, Gong X, Wang H. Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep. 2020;10(1):1–10.

    Article  Google Scholar 

  25. Elnakib A, Amer HM, Abou-Chadi FE-Z. Early lung cancer detection using deep learning optimization. Int J Online Biomed Eng. 2020;16:82–94.

    Article  Google Scholar 

  26. Savitha G, Jidesh P. A holistic deep learning approach for identification and classification of sub-solid lung nodules in computed tomographic scans. Comput Electr Eng. 2020;84: 106626.

    Article  Google Scholar 

  27. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.

    Article  Google Scholar 

  28. Amer HM, Abou-Chadi FE, Kishk SS, Obayya MI. A CAD system for the early detection of lung nodules using computed tomography scan images. Int J Online Biomed Eng. 2019;15(4).

  29. Tran GS, Nghiem TP, Nguyen VT, Luong CM, Burie J-C. Improving accuracy of lung nodule classification using deep learning with focal loss. J Healthc Eng. 2019;2019.

  30. Gong J, Liu J-Y, Wang L-J, Sun X-W, Zheng B, Nie S-D. Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Phys Med. 2018;46:124–33.

    Article  Google Scholar 

  31. Ali I, Hart GR, Gunabushanam G, Liang Y, Muhammad W, Nartowt B, Kane M, Ma X, Deng J. Lung nodule detection via deep reinforcement learning. Front Oncol. 2018;8:108.

    Article  Google Scholar 

  32. Gupta A, Saar T, Martens O, Moullec YL. Automatic detection of multisize pulmonary nodules in CT images: large-scale validation of the false-positive reduction step. Med Phys. 2018;45(3):1135–49.

    Article  Google Scholar 

  33. Gupta A, Martens O, Le Moullec Y, Saar T. Methods for increased sensitivity and scope in automatic segmentation and detection of lung nodules in CT images. In: 2015 IEEE international symposium on signal processing and information technology (ISSPIT), UAE. IEEE; 2015. p. 375–80.

  34. Zhang W, Wang X, Li X, Chen J. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Comput Biol Med. 2018;92:64–72.

    Article  Google Scholar 

  35. Li C, Zhu G, Wu X, Wang Y. False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks. IEEE Access. 2018;6:16060–7.

    Article  Google Scholar 

  36. Naqi SM, Sharif M, Yasmin M. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Int J Comput Assist Radiol Surg. 2018;13(7):1083–95.

    Article  Google Scholar 

  37. Saien S, Moghaddam HA, Fathian M. A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection. Int J Comput Assist Radiol Surg. 2018;13(3):397–409.

    Article  Google Scholar 

  38. de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M. 3D shape analysis to reduce false positives for lung nodule detection systems. Med Biol Eng Comput. 2017;55(8):1199–213.

    Article  Google Scholar 

  39. El-Regaily SA, Salem MAM, Aziz MHA, Roushdy MI. Lung nodule segmentation and detection in computed tomography. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), Egypt. IEEE; 2017. p. 72–8.

  40. Froz BR, de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M. Lung nodule classification using artificial crawlers, directional texture and support vector machine. Expert Syst Appl. 2017;69:176–88.

    Article  Google Scholar 

  41. Khordehchi EA, Ayatollahi A, Daliri MR. Automatic lung nodule detection based on statistical region merging and support vector machines. Image Anal Stereol. 2017;36(2):65–78.

    Article  Google Scholar 

  42. Shaukat F, Raja G, Gooya A, Frangi AF. Fully automatic detection of lung nodules in CT images using a hybrid feature set. Med Phys. 2017;44(7):3615–29.

    Article  Google Scholar 

  43. Liu J-K, Jiang H-Y, Gao M-D, He C-G, Wang Y, Wang P, Ma H, et al. An assisted diagnosis system for detection of early pulmonary nodule in computed tomography images. J Med Syst. 2017;41(2):1–9.

    Article  Google Scholar 

  44. Zhao F, Fan JL, Pan XY. Two-dimensional Otsu’s curve thresholding segmentation method based on gray and non local spatial gray feature. Appl Res Comput. 2012;29(5):1987–9.

    Google Scholar 

  45. Chunying P, Jikui L, Lixi H. White blood cells image classification based on improving the connection of FCM and LFP. J Image Graph. 2013;18(5):545–51.

    Google Scholar 

  46. Jiang H, Ma H, Qian W, Gao M, Li Y. An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE J Biomed Health Inform. 2017;22(4):1227–37.

    Article  Google Scholar 

  47. Dhara AK, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N. A combination of shape and texture features for classification of pulmonary nodules in lung CT images. J Digit Imaging. 2016;29(4):466–75.

    Article  Google Scholar 

  48. Mukhopadhyay S, Gal AA. Granulomatous lung disease: an approach to the differential diagnosis. Arch Pathol Lab Med. 2010;134(5):667–90.

    Article  Google Scholar 

  49. Dou Q, Chen H, Yu L, Qin J, Heng P-A. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng. 2016;64(7):1558–67.

    Article  Google Scholar 

  50. Firmino M, Angelo G, Morais H, Dantas MR, Valentim R. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed Eng Online. 2016;15(1):1–17.

    Article  Google Scholar 

  51. Javaid M, Javid M, Rehman MZU, Shah SIA. A novel approach to CAD system for the detection of lung nodules in CT images. Comput Methods Programs Biomed. 2016;135:125–39.

    Article  Google Scholar 

  52. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sánchez CI, Van Ginneken B. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35(5):1160–9.

    Article  Google Scholar 

  53. Farhangi MM, Frigui H, Seow A, Amini AA. 3-D active contour segmentation based on sparse linear combination of training shapes (SCoTS). IEEE Trans Med Imaging. 2017;36(11):2239–49.

    Article  Google Scholar 

  54. N. L. S. T. R. Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    Article  Google Scholar 

  55. Chaudhary PK, Pachori RB. Automatic diagnosis of COVID-19 and pneumonia using FBD method. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM), South Korea. IEEE; 2020. p. 2257–63.

  56. Chaudhary PK, Pachori RB. Automatic diagnosis of different grades of diabetic retinopathy and diabetic macular edema using 2-D-FBSE-FAWT. IEEE Trans Instrum Meas. 2022;71:1–9.

    Article  Google Scholar 

  57. Chaudhary PK, Pachori RB. FBSED based automatic diagnosis of COVID-19 using X-ray and CT images. Comput Biol Med. 2021;134: 104454.

    Article  Google Scholar 

Download references

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

Rigorous Literature study has been done with proposal of potential future directions in early detection of lung cancer with Low-Dose CT scan images using Artificial Intelligence. A comparative analysis of executed research works by many authors in the same field has also been portrayed using tabular form in given review paper.

Corresponding author

Correspondence to Gagan Thakral.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakral, G., Gambhir, S. Early Detection of Lung Cancer with Low-Dose CT Scan Using Artificial Intelligence: A Comprehensive Survey. SN COMPUT. SCI. 5, 441 (2024). https://doi.org/10.1007/s42979-024-02811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02811-7

Keywords

Navigation