Skip to main content
Log in

Development of Estimation Techniques for Solar Radiation, NDVI and Net Primary Productivity

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Net Primary Productivity (NPP) is a fundamental ecological metric that underpins the functioning of ecosystems. NPP estimation using the Carnegie–Ames–Stanford Approach (CASA) biosphere model is carried out for the Roorkee and Hyderabad study sites. The CASA model estimates the NPP at regional and global scales by using data of environmental factors like temperature, precipitation, total solar radiation, and the normalized difference vegetation index. For the study sites, the NPP is estimated using the CASA model, with high agreement between modeled and observed values. The findings show the usefulness of the CASA model for calculating the NPP. For the Roorkee site, the NPP estimates are significantly higher than those for the Hyderabad site. To determine the solar radiation for the Roorkee and Hyderabad stations, this study examines the monthly average values of cloud cover fraction, the duration of sunny hours and global solar radiation on a horizontal surface. It is found out that the relationship between cloud cover fraction and the maximum number of hours that can be spent in the sun is nonlinear. This results in a nonlinear relationship between cloud cover fraction and the solar radiation. The moderate resolution imaging spectroradiometer (MODIS) composite and the Landsat imagery are combined to generate the synthetic normalized difference vegetation index (NDVI) images which are further used as remote sensing data for the estimation of NPP. This study employs a hybrid methodology that combines smoothing, filtering, and regression analysis techniques. The combined mode filter combines the forward and backward Kalman filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All the database are freely available and cited in the manuscript.

References

  1. Field CB, Randerson JT, Malmström CM. Global net primary production: combining ecology and remote sensing. Remote Sens Environ. 1995;51(1):74–88. https://doi.org/10.1016/0034-4257(94)00066-V.

    Article  Google Scholar 

  2. Nayak RK, Patel NR, Dadhwal VK. Inter-annual variability and climate control of terrestrial net primary productivity over India. Int J Climatol. 2013;33(1):132–42. https://doi.org/10.1002/joc.3414.

    Article  Google Scholar 

  3. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycl. 1993;7(4):811–41. https://doi.org/10.1029/93GB02725.

    Article  Google Scholar 

  4. Nayak R, Mishra N, Dadhwal VRP, Poovadiyil S, Rao K, Dutt C. Assessing the consistency between AVHRR and MODIS NDVI datasets for estimating terrestrial net primary productivity over India. J Earth Syst Sci. 2016;125: 1189–1204. https://doi.org/10.1007/s12040-016-0723-9.

  5. Monteith JL, Moss CJ. Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans R Soc Lond Ser B Biol Sci. 1977;281(980):277–94.

    Google Scholar 

  6. Zhang G, Huang F, Zheng M. Generating time series of medium-resolution albedo images by kalman filtering algorithm. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6. 2017. https://doi.org/10.1109/CISP-BMEI.2017.8302030.

  7. Huete AR, Didan K, Leeuwen WJD, Jacobson A, Solanos R, Laing TD. MODIS vegetation index (MOD13) Algorithm theoretical basis document version 3.1 principal investigators. 1999. https://api.semanticscholar.org/CorpusID:125371817

  8. Pal MK, Pradhan PM. Generation of NDVI time series using a hybrid regression kalman filter based approach. In: 2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT), pp. 182–186. 2023. https://doi.org/10.1109/APSIT58554.2023.10201709.

  9. Chhabra A, Dadhwal VK. Estimating terrestrial net primary productivity over India using satellite data. Curr Sci. 2004;86(2):269–71.

    Google Scholar 

  10. Bejagam V, Sharma A. Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecol Inform. 2022;70: 101732. https://doi.org/10.1016/j.ecoinf.2022.101732.

    Article  Google Scholar 

  11. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. A continuous satellite-derived measure of global terrestrial primary production. BioScience. 2004;54(6):547–60. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.

    Article  Google Scholar 

  12. Potter C, Klooster S, Genovese V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change. 2012;115:365–78. https://doi.org/10.1007/s10584-012-0460-2.

    Article  Google Scholar 

  13. Huang X, He L, He Z, Nan X, Lyu P, Ye H. An improved Carnegie–Ames–Stanford approach model for estimating ecological carbon sequestration in mountain vegetation. Front Ecol Evolut. 2022;10. https://doi.org/10.3389/fevo.2022.1048607.

  14. Prince SD, Goward SN. Global primary production: a remote sensing approach. J Biogeogr. 1995;22(4/5):815–35.

    Article  Google Scholar 

  15. Zhou F, Zhong D. Kalman filter method for generating time-series synthetic landsat images and their uncertainty from landsat and MODIS observations. Remote Sens Environ. 2020;239: 111628. https://doi.org/10.1016/j.rse.2019.111628.

    Article  Google Scholar 

  16. Kempeneers P, Sedano F, Piccard I, Eerens H. Data assimilation of PROBA-V 100 and 300 m. IEEE J Select Top Appl Earth Observ Remote Sens. 2016;9(7):3314–25. https://doi.org/10.1109/JSTARS.2016.2527922.

    Article  Google Scholar 

  17. Li X, Dong H, Han S. Multiple linear regression with kalman filter for predicting end prices of online auctions, pp. 182–191. 2020. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00042.

  18. Sedano F, Kempeneers P, Hurtt G. A Kalman filter-based method to generate continuous time series of medium-resolution NDVI images. Remote Sens. 2014;6(12):12381–408. https://doi.org/10.3390/rs61212381.

    Article  Google Scholar 

  19. Sarkar, M.N.I.: Estimation of solar radiation from cloud cover data of Bangladesh. Renew Wind Water Solar 2016;3:11. https://doi.org/10.1186/s40807-016-0031-7.

  20. Meenal R, Selvakumar AI. Estimation of global solar radiation using sunshine duration and temperature in chennai. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1–6. 2016. https://doi.org/10.1109/ICETETS.2016.7603089.

  21. Duffie, J., Beckman, W.: Solar engineering of thermal processes. Wiley. 2006. https://doi.org/10.1002/9781118671603.

  22. Angstrom A. Solar and terrestrial radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation. Quart J R Meteorol Soc. 1924;50(210): 121–126. https://doi.org/10.1002/qj.49705021008.

  23. Akinoǧlu BG, Ecevit A. Construction of a quadratic model using modified Ångstrom coefficients to estimate global solar radiation. Solar Energy. 1990;45(2):85–92. https://doi.org/10.1016/0038-092X(90)90032-8.

    Article  Google Scholar 

  24. Ertekin C, Yaldiz O. Comparison of some existing models for estimating global solar radiation for antalya (Turkey). Energy Conv Manag. 2000;41(4):311–30. https://doi.org/10.1016/S0196-8904(99)00127-2.

    Article  Google Scholar 

  25. Kalman RE. A new approach to linear liltering and prediction problems. J Basic Eng. 1960;82(1):35–45. https://doi.org/10.1115/1.3662552.

    Article  Google Scholar 

  26. Welch G, Bishop G. An introduction to the Kalman Filter. USA: Technical report. 1995.

  27. Rauch HE, Tung F, Striebel CT. Maximum likelihood estimates of linear dynamic systems. AIAA J. 1965;3(8):1445–50. https://doi.org/10.2514/3.3166.

    Article  MathSciNet  Google Scholar 

  28. Rauch H. Solutions to the linear smoothing problem. IEEE Trans Autom Control. 1963;8(4):371–2. https://doi.org/10.1109/TAC.1963.1105600.

    Article  Google Scholar 

  29. Monteith JL. Solar Radiation and productivity in tropical ecosystems. J Appl Ecol. 1972;9:747–66. https://doi.org/10.2307/2401901.

    Article  Google Scholar 

  30. Bishop JKB, Rossow WB. Spatial and temporal variability of global surface solar irradiance. J Geophys Res Oceans. 1991;96(C9):16839–58. https://doi.org/10.1029/91JC01754.

    Article  Google Scholar 

  31. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J Clim. 1996;9(4): 676–705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

  32. Chaudhari KN, Sarkar C, Patel NK, Parihar JS. An inter-comparison of satellite based NOAA CPC rainfall estimates and gauge observations over selected stations in India, pp. 1–5. 2006. https://api.semanticscholar.org/CorpusID:18146271.

  33. NRSC - IRS P6 LISS III of Kharif, Rabi, and Zaid [online]. Available https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC503/MAP/UK.jpg.

  34. NRSC - IRS P6 LISS III of Kharif, Rabi, and Zaid [online]. Available https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC503/MAP/TS.jpg.

  35. EMCWF - Climate Data Service [online]. Available https://cds.climate.copernicus.eu.

  36. IMD - Data Supply Portal [online]. Available: https://dsp.imdpune.gov.in.

  37. USGS - NASA Earth Explorer [online]. Available: https://earthexplorer.usgs.gov.

  38. LPDAAC - NASA MOD13Q1 MODIS Terra Vegetation [online]. Available: https://lpdaac.usgs.gov.

  39. Despotovic M, Nedic V, Despotovic D, Cvetanovic S. Review and statistical analysis of different global solar radiation sunshine models. Renew Sustain Energy Rev. 2015;52(C):1869–80. https://doi.org/10.1016/j.rser.2015.08.03.

    Article  Google Scholar 

  40. Roy DP, Ju J, Lewis P, Schaaf C, Gao F, Hansen M, Lindquist E. Multi-Temporal MODIS-landsat data fusion for relative radiometric normalization, gap filling, and prediction of landsat data. Remote Sens Environment. 2008;112(6):3112–30. https://doi.org/10.1016/j.rse.2008.03.009.

    Article  Google Scholar 

Download references

Funding

This work is funded by M/S Logintech Solutions Pvt. Ltd., Secunderabad, under the project grant code LTS-1552-ECD.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally in this research work.

Corresponding author

Correspondence to Pyari Mohan Pradhan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Emerging Applications of Data Science for Real-World Problems” guest edited by Satyasai Jagannath Nanda, Rajendra Prasad Yadav and Mukesh Saraswa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M.K., Pradhan, P.M. Development of Estimation Techniques for Solar Radiation, NDVI and Net Primary Productivity. SN COMPUT. SCI. 5, 378 (2024). https://doi.org/10.1007/s42979-024-02720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02720-9

Keywords

Navigation