Skip to main content
Log in

Achieving Seamless Semantic Interoperability and Enhancing Text Embedding in Healthcare IoT: A Deep Learning Approach with Survey

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Achieving semantic interoperability in healthcare is one of the significant challenges in the rapidly expanding healthcare sector. On the other hand, IoT in healthcare can provide patient-centric treatment mechanisms to help resolve these issues. When several healthcare organizations are generating heterogeneous medical information, semantic interoperability becomes essential to develop better treatment plans and better medical research. In this article, we discuss the applications of healthcare IoT, a comparative study of existing solution paradigms for achieving semantic interoperability and its enabling technologies. The comprehensive analysis of semantic interoperability has versatile dimensions to meet this, and it establishes deep learning-based directions. In continuing the background work, we proposed a new deep learning model called MedRelBERT with six embeddings to remove linguistic ambiguities in medical documents. The survey also examines the bibliographic evaluation of Web of Science articles discussing semantic interoperability solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

As the data used for this study is downlaoded from MIMIC III database after attending city training program provided by physionet. Demo version of this dataset is available publically. It is unethical to provide the dataset without undergoing city training program offered by them.

References

  1. Geraci A. IEEE standard computer dictionary: compilation of IEEE standard computer glossaries. New Jersey: IEEE Press; 1991.

    Google Scholar 

  2. Shanmugam GS, Shantharajah S, Iyengar N. Smart green resource conservation approach for smart IOT cloud. J Comput Theor Nanosci. 2018;15(6–7):2069–75.

    Article  Google Scholar 

  3. Javaid M, Khan IH. Internet of things (iot) enabled healthcare helps to take the challenges of covid-19 pandemic. J Oral Biol Craniofac Res. 2021;11(2):209–14. https://doi.org/10.1016/j.jobcr.2021.01.015.

    Article  Google Scholar 

  4. Nasajpour M, Pouriyeh S, Parizi RM, Dorodchi M, Valero M, Arabnia HR. Internet of things for current covid-19 and future pandemics: an exploratory study. J Healthc Inf Res. 2020;4:325–64. https://doi.org/10.1007/s41666-020-00080-6.

    Article  Google Scholar 

  5. Ramesh MV, Pathinarupothi RK, Rangan ES. Systems, methods, and devices for remote health monitoring and management. Google Patents. US Patent 2020;10,542,889

  6. Pawelek J, Baca-Motes K, Pandit JA, Berk BB, Ramos E, et al. The power of patient engagement with electronic health records as research participants. JMIR Med Inf. 2022;10(7):39145.

    Article  Google Scholar 

  7. Bracha Y, Bagwell J, Furberg R, Wald JS, et al. Consumer-mediated data exchange for research: current state of us law, technology, and trust. JMIR Med Inf. 2019;7(2):12348.

    Article  Google Scholar 

  8. Javaid M, Haleem A, Singh RP, Haq MIU, Raina A, Suman R. Industry 5.0: potential applications in covid-19. J Ind Integr Manage. 2020;5(4):507–30.

    Article  Google Scholar 

  9. Nosowsky R, Giordano TJ. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) privacy rule: implications for clinical research. Annu Rev Med. 2006;57:575–90.

  10. Voigt P, Von dem Bussche A. The EU general data protection regulation (GDPR). A practical guide. 1st ed. Cham: Springer International Publishing; 2017.

    Book  Google Scholar 

  11. Tarassenko L, Peggram C, Hayton P, Gibson O, George A, Wheeler J. Telemedicine system. Google Patents. US Patent App. 2006;10/528,365

  12. Van Eck NJ, Waltman L. Citation-based clustering of publications using citnetexplorer and vosviewer. Scientometrics. 2017;111(2):1053–70.

    Article  Google Scholar 

  13. Ketu S, Mishra PK. Internet of healthcare things: a contemporary survey. J Netw Comput Appl. 2021;192: 103179. https://doi.org/10.1016/j.jnca.2021.103179.

    Article  Google Scholar 

  14. Gatouillat A, Badr Y, Massot B, Sejdić E. Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018;5(5):3810–22. https://doi.org/10.1109/JIOT.2018.2849014.

    Article  Google Scholar 

  15. Sony P, Suresh Kumar N. Concept-based electronic health record retrieval system in healthcare IOT. In: Cognitive informatics and soft computing, vol. 768. Advances in intelligent systems and computing. Berlin: Springer; 2019. p. 178–88.

    Chapter  Google Scholar 

  16. da Costa CA, Pasluosta CF, Eskofier B, da Silva DB, da Rosa Righi R. Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018;89:61–9. https://doi.org/10.1016/j.artmed.2018.05.005.

    Article  Google Scholar 

  17. Islam M, Rahaman A, et al. Development of smart healthcare monitoring system in iot environment. SN Comp Sci. 2020;1(3):1–11.

    Google Scholar 

  18. Jurado Pérez L, Salvachúa J. An approach to build e-health iot reactive multi-services based on technologies around cloud computing for elderly care in smart city homes. Appl Sci. 2021;11(11):5172.

    Article  Google Scholar 

  19. Juneja S, Dhiman G, Kautish S, Viriyasitavat W, Yadav K. A perspective roadmap for iomt-based early detection and care of the neural disorder, dementia. J Healthc Eng. 2021;2021:6712424.

    Article  Google Scholar 

  20. Otoom M, Otoum N, Alzubaidi MA, Etoom Y, Banihani R. An iot-based framework for early identification and monitoring of covid-19 cases. Biomed Signal Process Control. 2020;62: 102149. https://doi.org/10.1016/j.bspc.2020.102149.

    Article  Google Scholar 

  21. Jolley CJ, Bell J, Rafferty GF, Moxham J, Strang J. Understanding heroin overdose: a study of the acute respiratory depressant effects of injected pharmaceutical heroin. PLoS ONE. 2015;10(10):0140995.

    Article  Google Scholar 

  22. Nandyala CS, Kim H-K. From cloud to fog and iot-based real-time u-healthcare monitoring for smart homes and hospitals. Int J Smart Home. 2016;10(2):187–96.

    Article  Google Scholar 

  23. Jeanningros H, McFall L. The value of sharing: branding and behaviour in a life and health insurance company. Big Data Soc. 2020;7(2):2053951720950350.

    Article  Google Scholar 

  24. Kayyali HA, Weimer S, Frederick C, Martin C, Basa D, Juguilon JA, Jugilioni F. Remotely attended home monitoring of sleep disorders. Telemed e-Health. 2008;14(4):371–4.

    Article  Google Scholar 

  25. Saraubon K, Anurugsa K, Kongsakpaibul A. A smart system for elderly care using iot and mobile technologies. In: Proceedings of the 2018 2nd international conference on software and e-business; 2018. p. 59–63

  26. Suresh A, Udendhran R, Balamurgan M, Varatharajan R. A novel internet of things framework integrated with real time monitoring for intelligent healthcare environment. J Med Syst. 2019;43(6):1–10.

    Article  Google Scholar 

  27. Wu S-J, Chiang R-D, Chang S-H, Chang W-T. An interactive telecare system enhanced with iot technology. IEEE Pervasive Comput. 2017;16(3):62–9. https://doi.org/10.1109/MPRV.2017.2940967.

    Article  Google Scholar 

  28. Renoux J, Luperto M, Basilico N, Romeo M, Milis M, Lunardini F, Ferrante S, Loutfi A, Borghese NA. A virtual caregiver for assisted daily living of pre-frail users. In: German conference on artificial intelligence (Künstliche Intelligenz); 2020. Springer. p. 176–189

  29. Rahman M, Hossain MS, et al. A cloud-based virtual caregiver for elderly people in a cyber physical iot system. Clust Comput. 2019;22(1):2317–30.

    Article  Google Scholar 

  30. Varghese AB, Gokilavani M, Kunjachan M, Namboodhiri A, Menezes G. Ai based caregiver for dementia patients. In: 2021 fifth international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC); 2021. p. 1–5. https://doi.org/10.1109/I-SMAC52330.2021.9640970

  31. Talal M, Zaidan A, Zaidan B, Albahri AS, Alamoodi AH, Albahri OS, Alsalem M, Lim CK, Tan KL, Shir W, et al. Smart home-based iot for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. J Med Syst. 2019;43(3):1–34.

    Article  Google Scholar 

  32. Leong Y-Y, Chen Y-C. Cyber risk cost and management in iot devices-linked health insurance. Geneva Pap Risk Insur Issues Pract. 2020;45(4):737–59.

    Article  Google Scholar 

  33. Storey G, Meng Q, Li B. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture. Sustainability. 2022. https://doi.org/10.3390/su14031458.

    Article  Google Scholar 

  34. Donnelly K, et al. Snomed-ct: the advanced terminology and coding system for ehealth. Stud Health Technol Inf. 2006;121:279.

    Google Scholar 

  35. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in icd-9-cm and icd-10 administrative data. Med Care. 2005;43(11):1130–9.

    Article  Google Scholar 

  36. Ieee standard computer dictionary. A compilation of ieee standard computer glossaries. IEEE Std. 1991;610:1–217. https://doi.org/10.1109/IEEESTD.1991.106963.

    Article  Google Scholar 

  37. Perakis K, Bouras T, Ntalaperas D, Hasapis P, Georgousopoulos C, Sahay R, Beyan OD, Potlog C, Usurelu D. Advancing patient record safety and ehr semantic interoperability. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE; 2013. p. 3251–3257

  38. Aimé X, Traore L, Chniti A, Sadou E, Ouagne D, Charlet J, Jaulent M-C, Darmoni S, Griffon N, Amardeilh F, Bascarane L, Lepage E, Daniel C. Semantic interoperability platform for healthcare information exchange. IRBM. 2015;36(2):62–9. https://doi.org/10.1016/j.irbm.2015.01.003.ANRTECSAN2015.

    Article  Google Scholar 

  39. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K. Semantic interoperability in the internet of things: an overview from the inter-iot perspective. J Netw Comput Appl. 2017;81:111–24.

    Article  Google Scholar 

  40. Mavrogiorgou A, Kiourtis A, Perakis K, Pitsios S, Kyriazis D. Iot in healthcare: achieving interoperability of high-quality data acquired by iot medical devices. Sensors. 2019;19(9):1978.

    Article  Google Scholar 

  41. Alamri A. Ontology middleware for integration of iot healthcare information systems in ehr systems. Computers. 2018;7(4):51. https://doi.org/10.3390/computers7040051.

    Article  Google Scholar 

  42. Kiljander J, D’elia A, Morandi F, Hyttinen P, Takalo-Mattila J, Ylisaukko-Oja A, Soininen J-P, Cinotti TS. Semantic interoperability architecture for pervasive computing and internet of things. IEEE Access. 2014;2:856–73. https://doi.org/10.1109/ACCESS.2014.2347992.

    Article  Google Scholar 

  43. Thangaraj M, Ponmalar PP, Sujatha G, Anuradha S. Agent based semantic internet of things (iot) in smart health care. In: Proceedings of the the 11th international knowledge management in organizations conference on the changing face of knowledge management impacting society, 2016. p. 1–9

  44. Yang S, Guo J, Wei R. Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange. Inf Syst. 2017;69:195–217.

    Article  Google Scholar 

  45. Yang S, Guo J, Wei R. Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange. Inf Syst. 2017;69:195–217. https://doi.org/10.1016/j.is.2016.10.010.

    Article  Google Scholar 

  46. Kotha A, Manohar K, Venkanna U. Iaasi: a device based interoperability as a service for iomt devices. J Ambient Intell Human Comput. 2023;14(10):14321–32. https://doi.org/10.1007/s12652-023-04669-8.

    Article  Google Scholar 

  47. Sony P, Shanmugam GS, Nagarajan S. An intuitionistic fuzzy-based intelligent system for semantic interoperability and privacy preservation in healthcare systems. Soft Comput. 2023. https://doi.org/10.1007/s00500-023-08972-6.

    Article  Google Scholar 

  48. Ghorbani A, Davoodi F, Zamanifar K. Using type-2 fuzzy ontology to improve semantic interoperability for healthcare and diagnosis of depression. Artif Intell Med. 2023. https://doi.org/10.1016/j.artmed.2022.102452.

    Article  Google Scholar 

  49. Guo H, Scriney M, Liu K. An ostensive information architecture to enhance semantic interoperability for healthcare information systems. Inf Syst Front. 2023. https://doi.org/10.1007/s10796-023-10379-5.

    Article  Google Scholar 

  50. Sony P, Nagarajan N. Semantic interoperability model in healthcare internet of things using healthcare sign description framework. Int Arab J Inf Technol. 2022;19(4):589–96.

    Google Scholar 

  51. Gorrepati RR, et al. Semantic web of things for healthcare interoperability using IoMT technologies. Semantic technologies for intelligent industry 4.0 applications. River Publishers; 2023. p. 49–82.

  52. Das S, Hussey P. Hl7-fhir-based contsys formal ontology for enabling continuity of care data interoperability. J Personal Med. 2023;13(7):1024. https://doi.org/10.3390/jpm13071024.

    Article  Google Scholar 

  53. Ullah F, Habib MA, Farhan M, Khalid S, Durrani MY, Jabbar S. Semantic interoperability for big-data in heterogeneous iot infrastructure for healthcare. Sustain Cities Soc. 2017;34:90–6. https://doi.org/10.1016/j.scs.2017.06.010.

    Article  Google Scholar 

  54. Raj S, Ray KC. A personalized point-of-care platform for real-time ecg monitoring. IEEE Trans Consum Electron. 2018;64(4):452–60. https://doi.org/10.1109/TCE.2018.2877481.

    Article  Google Scholar 

  55. Jaleel A, Mahmood T, Hassan MA, Bano G, Khurshid SK. Towards medical data interoperability through collaboration of healthcare devices. IEEE Access. 2020;8:132302–19. https://doi.org/10.1109/ACCESS.2020.3009783.

    Article  Google Scholar 

  56. Jabbar S, Ullah F, Khalid S, Khan M, Han K. Semantic interoperability in heterogeneous iot infrastructure for healthcare. Wirel Commun Mob Comput. 2017;2017:1–10. https://doi.org/10.1155/2017/9731806.

    Article  Google Scholar 

  57. Alamri A. Ontology middleware for integration of iot healthcare information systems in ehr systems. Computers. 2018;7:51. https://doi.org/10.3390/computers7040051.

    Article  Google Scholar 

  58. Mavrogiorgou A, Kiourtis A, Perakis K, Pitsios S, Kyriazis D. Iot in healthcare: achieving interoperability of high-quality data acquired by iot medical devices. Sensors (Basel, Switzerland). 2019;19:1978. https://doi.org/10.3390/s19091978.

    Article  Google Scholar 

  59. Ahamed J, Chishti MA. Ontology based semantic interoperability approach in the internet of things for healthcare domain. J Discr Math Sci Cryptogr. 2021;24(6):1727–38.

    Google Scholar 

  60. Mulligan G. The 6lowpan architecture. In: Proceedings of the 4th workshop on embedded networked sensors, 2007. p. 78–82

  61. Kushalnagar N, Montenegro G, Schumacher C. Ipv6 over low-power wireless personal area networks (6lowpans): overview, assumptions, problem statement, and goals. 2007. p. 1–7.

  62. Winter T, Thubert P, Brandt A, Hui J, Kelsey R, Levis P, Pister K, Struik R, Vasseur J-P, Alexander R. Rpl: Ipv6 routing protocol for low-power and lossy networks. Technical report 2012

  63. Yeo K, Ning J. Integrating supply chain and critical chain concepts in engineer-procure-construct (epc) projects. Int J Project Manage. 2002;20(4):253–62.

    Article  Google Scholar 

  64. Chaudhari BS, Zennaro M, Borkar S. Lpwan technologies: emerging application characteristics, requirements, and design considerations. Future Internet. 2020;12(3):46.

    Article  Google Scholar 

  65. Sneps-Sneppe M, Namiot D. On physical web models. In: 2016 International Siberian conference on control and communications (SIBCON). IEEE; 2016. p. 1–6

  66. Klauck R, Kirsche M. Enhanced dns message compression-optimizing mdns/dns-sd for the use in 6lowpans. In: 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops). IEEE; 2013. p. 596–601

  67. Jara AJ, Martinez-Julia P, Skarmeta A. Light-weight multicast dns and dns-sd (lmdns-sd): Ipv6-based resource and service discovery for the web of things. In: 2012 sixth international conference on innovative mobile and internet services in ubiquitous computing. IEEE; 2012. p. 731–738

  68. Bormann C, Castellani AP, Shelby Z. Coap: an application protocol for billions of tiny internet nodes. IEEE Internet Comput. 2012;16(2):62–7.

    Article  Google Scholar 

  69. Appel S, Sachs K, Buchmann A. Towards benchmarking of amqp. In: Proceedings of the fourth ACM international conference on distributed event-based systems, 2010. p. 99–100

  70. Hunkeler U, Truong HL, Stanford-Clark A. Mqtt-s-a publish/subscribe protocol for wireless sensor networks. In: 2008 3rd international conference on communication systems software and middleware and workshops (COMSWARE’08). IEEE; 2008. p. 791–798

  71. Rachidi H, Karmouch A. A framework for self-configuring devices using tr-069. In: 2011 International conference on multimedia computing and systems. IEEE; 2011. p. 1–6

  72. Chu N, Raouf D, Corlay B, Ammari M, Gligoric N, Krco S, Ognjanovic N, Obradovic A. Oma dm v.1 x compliant lightweight device management for constrained m2m devices. Trans Emerg Telecommun Technol. 2013;24(5):517–31.

    Article  Google Scholar 

  73. Beeler GW. Hl7 version 3-an object-oriented methodology for collaborative standards development. Int J Med Inf. 1998;48(1–3):151–61.

    Article  Google Scholar 

  74. Dolin RH, Alschuler L, Beebe C, Biron PV, Boyer SL, Essin D, Kimber E, Lincoln T, Mattison JE. The hl7 clinical document architecture. J Am Med Inform Assoc. 2001;8(6):552–69.

    Article  Google Scholar 

  75. Bender D, Sartipi K. Hl7 fhir: an agile and restful approach to healthcare information exchange. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems. IEEE; 2013. p. 326–331

  76. Stausberg J, Lehmann N, Kaczmarek D, Stein M. Reliability of diagnoses coding with icd-10. Int J Med Inf. 2008;77(1):50–7.

    Article  Google Scholar 

  77. Organization WH, et al. International classification of diseases-ninth revision (icd-9). Wkly Epidemiol Rec. 1988;63(45):343–4.

    Google Scholar 

  78. Jack A, Percy CL, Sobin L, Whelan S. International classification of diseases for oncology: ICD-O. Geneva: World Health Organization; 2000.

    Google Scholar 

  79. Cobb W, Peindl R, Zerey M, Carbonell A, Heniford B. Mesh terminology 101. Hernia. 2009;13(1):1–6.

    Article  Google Scholar 

  80. Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shabo A. Hl7 clinical document architecture, release 2. J Am Med Inform Assoc. 2006;13(1):30–9.

    Article  Google Scholar 

  81. Mildenberger P, Eichelberg M, Martin E. Introduction to the dicom standard. Eur Radiol. 2002;12(4):920–7.

    Article  Google Scholar 

  82. Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T, Bidgood WD Jr, Forrey AW, Francis WG, Tracy WR, Leavelle D, et al. Development of the logical observation identifier names and codes (loinc) vocabulary. J Am Med Inform Assoc. 1998;5(3):276–92.

    Article  Google Scholar 

  83. Iso 22600:2014 health informatics—privilege management and access control. International Organization for Standardization. 2015

  84. Luna D, Otero C, Gambarte ML, Frangella J. Terminology services: standard terminologies to control medical vocabulary words are not what they say but what they mean. In: eHealth: making health care smarter, vol. 9; 2018

  85. Ricardo B-Y, et al. Modern information retrieval. India: Pearson Education; 1999.

    Google Scholar 

  86. Segura-Bedmar I, Crespo M, de Pablo-Sánchez C, Martínez P. Resolving anaphoras for the extraction of drug-drug interactions in pharmacological documents. BMC Bioinf. 2010;11:1–9.

    Article  Google Scholar 

  87. Vicedo JL. Ferrández A. Importance of pronominal anaphora resolution in question answering systems. In: Proceedings of the 38th annual meeting of the association for computational linguistics, 2000. p. 555–562

  88. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inf. 2001;34(5):301–10.

    Article  Google Scholar 

  89. GO Consortium. The gene ontology (go) database and informatics resource. Nucleic Acids Res. 2004;32(suppl1):258–61.

    Article  Google Scholar 

  90. Rector AL, Rogers JE, Pole P. The galen high level ontology. In: Medical informatics Europe’96. IOS Press; 1996. p. 174–178

  91. Bodenreider O. The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Res. 2004;32(suppl1):267–70.

    Article  Google Scholar 

  92. Zhu H, Paschalidis IC, Tahmasebi A. Clinical concept extraction with contextual word embedding. arXiv preprint arXiv:1810.10566, 2018

  93. Pesaranghader A, Pesaranghader A, Matwin S, Sokolova M. One single deep bidirectional lstm network for word sense disambiguation of text data. In: Bagheri E, Cheung JCK, editors. Advances in artificial intelligence. Cham: Springer; 2018. p. 96–107.

    Chapter  Google Scholar 

  94. Moqurrab SA, Ayub U, Anjum A, Asghar S, Srivastava G. An accurate deep learning model for clinical entity recognition from clinical notes. IEEE J Biomed Health Inf. 2021;25(10):3804–11. https://doi.org/10.1109/JBHI.2021.3099755.

    Article  Google Scholar 

  95. Pesaranghader A, Matwin S, Sokolova M, Pesaranghader A. deepbiowsd: effective deep neural word sense disambiguation of biomedical text data. J Am Med Inf Assoc. 2019;26:438–46. https://doi.org/10.1093/jamia/ocy189.

    Article  Google Scholar 

  96. Shelleh M, Gurupur VP. Pc-lstm: Ontology-based long short-term memory state model for data incompleteness prediction. IEEE; 2022. p. 2606–2610. https://doi.org/10.1109/EMBC48229.2022.9871867

  97. Tan L, Gupta R, van Genabith J. USAAR-WLV: hypernym generation with deep neural nets. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). Association for computational linguistics, Denver, Colorado, 2015. p. 932–937. https://doi.org/10.18653/v1/S15-2155

  98. Kabir MA, Phillips T, Luo X, Hasan MA: Attention-based approach to extract syntactic patterns denoting semantic relations in sentential context, 2021

  99. Moqurrab SA, Tariq N, Anjum A, Asheralieva A, Malik SUR, Malik H, Pervaiz H, Gill SS. A deep learning-based privacy-preserving model for smart healthcare in internet of medical things using fog computing. Wireless Pers Commun. 2022;126:2379–401. https://doi.org/10.1007/s11277-021-09323-0.

    Article  Google Scholar 

  100. Boag W, Sergeeva E, Kulshreshtha S, Szolovits P, Rumshisky A, Naumann T. Cliner 2.0: Accessible and accurate clinical concept extraction. arXiv preprint arXiv:1803.02245, 2018

  101. Liu Z, Yang M, Wang X, Chen Q, Tang B, Wang Z, Xu H. Entity recognition from clinical texts via recurrent neural network. BMC Med Inform Decis Mak. 2017;17:67. https://doi.org/10.1186/s12911-017-0468-7.

    Article  Google Scholar 

  102. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz682.

    Article  Google Scholar 

  103. Si Y, Wang J, Xu H, Roberts K. Enhancing clinical concept extraction with contextual embeddings. J Am Med Inf Assoc JAMIA. 2019;26:1297–304. https://doi.org/10.1093/jamia/ocz096.

    Article  Google Scholar 

  104. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American chapter of the association for computational linguistics: human language technologies, vol. 1 (long and short papers). Association for computational linguistics, Minneapolis, Minnesota; 2019. p. 4171–4186. https://doi.org/10.18653/v1/N19-1423

  105. Hakala K, Pyysalo S. Biomedical named entity recognition with multilingual bert. In: Proceedings of the 5th workshop on BioNLP open shared tasks, 2019. p. 56–61

  106. Guo J, Zhang Z, Xu L, Chen B, Chen E. Adaptive adapters: an efficient way to incorporate bert into neural machine translation. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:1740–51. https://doi.org/10.1109/TASLP.2021.3076863.

    Article  Google Scholar 

  107. Zhang Y, Xu G, Wang Y, Lin D, Li F, Wu C, Zhang J, Huang T. A question answering-based framework for one-step event argument extraction. IEEE Access. 2020;8:65420–31. https://doi.org/10.1109/ACCESS.2020.2985126.

    Article  Google Scholar 

  108. Zhao L, Li L, Zheng X, Zhang J. A bert based sentiment analysis and key entity detection approach for online financial texts. In: 2021 IEEE 24th International conference on computer supported cooperative work in design (CSCWD), 2021. p. 1233–1238. https://doi.org/10.1109/CSCWD49262.2021.9437616

  109. Tsvetkova A. Anaphora resolution in Chinese for analysis of medical q &a platforms. In: Zhu X, Zhang M, Hong Y, He R, editors. Natural language processing and Chinese computing. Cham.: Springer; 2020. p. 490–7.

    Google Scholar 

  110. Ulčar M, Robnik-Šikonja M. High quality elmo embeddings for seven less-resourced languages. arXiv preprint arXiv:1911.10049, 2019

  111. Church KW. Word2vec. Nat Lang Eng. 2017;23(1):155–62.

    Article  Google Scholar 

  112. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019;36(4):1234–40. https://doi.org/10.1093/bioinformatics/btz682.

    Article  Google Scholar 

  113. Alsentzer E, Murphy JR, Boag W, Weng W-H, Jin D, Naumann T, McDermott M. Publicly available clinical bert embeddings. arXiv preprint arXiv:1904.03323, 2019

  114. Michalopoulos G, Wang Y, Kaka H, Chen H, Wong A. Umlsbert: clinical domain knowledge augmentation of contextual embeddings using the unified medical language system metathesaurus. arXiv preprint arXiv:2010.10391, 2020

  115. Yuan Z, Zhao Z, Sun H, Li J, Wang F, Yu S. Coder: knowledge-infused cross-lingual medical term embedding for term normalization. J Biomed Inf. 2022;126: 103983.

    Article  Google Scholar 

  116. Bodenreider O. The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Res. 2004. https://doi.org/10.1093/nar/gkh061.PubMed. (PMID:14681409).

    Article  Google Scholar 

  117. Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning. Neurocomputing. 2021;452:48–62.

    Article  Google Scholar 

  118. Vorobeychik Y, Kantarcioglu M, Brachman R, Stone P, Rossi F. Adversarial machine learning, vol. 12. Berlin: Springer; 2018.

    Book  Google Scholar 

  119. Jin D, Jin Z, Hu Z, Vechtomova O, Mihalcea R. Deep learning for text style transfer: a survey. Comput Linguist. 2022;48(1):155–205.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Siva Shanmugam.

Ethics declarations

Conflict of Interest

There is no conflict of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purushothaman, S., Shanmugam, G.S. & Nagarajan, S. Achieving Seamless Semantic Interoperability and Enhancing Text Embedding in Healthcare IoT: A Deep Learning Approach with Survey. SN COMPUT. SCI. 5, 99 (2024). https://doi.org/10.1007/s42979-023-02392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02392-x

Keywords

Navigation