Skip to main content

A Comparative Analysis Between Proposed Neuro-fuzzy, Fuzzy, and Heuristic-Neuro-fuzzy Controller for Autonomous Vehicle Parking in the Dynamic Environment

Abstract

The single-stage control is generally used to solve the autonomous parking system for dynamic environment. Sometimes, environment provides conflicting information to sensors where the single control mechanism may not be able to take prompt action. This situation causes a multiple-choice overload problem in which a single-stage system becomes confused when many decisions can be true, which can lead to collision in exceptional situations. This paper proposes a multi-stage neuro-fuzzy architecture for autonomous parallel parking in the unknown and dynamic environment. It generates an obstacle avoidance capability for the vehicle during the parking process. The multiple-choice overload problem is addressed, and a possible solution is provided by aiding a trained neural network as a pre-controller to the main fuzzy controller. The simulations results in the presence of static and moving obstacle are provided and compared with the earlier methods to prove the validity of the proposed architecture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Paromtchik IE, Laugier C. Autonomous parallel parking of a nonholonomic vehicle. Proc Conf Intell Veh. 1996. https://doi.org/10.1109/IVS.1996.566343.

    Article  MATH  Google Scholar 

  2. Gómez-Bravo F, Cuesta F, Ollero A. Parallel and diagonal parking in nonholonomic autonomous vehicles. Eng Appl Artif Intell. 2001;14(4):419–34. https://doi.org/10.1016/S0952-1976(01)00004-5.

    Article  Google Scholar 

  3. Chang SJ, Li THS. Design and implementation of fuzzy parallel-parking control for a car-type mobile robot. J Intell Robot Syst Theory Appl. 2002;34(2):175–94. https://doi.org/10.1023/A:1015664327686.

    MathSciNet  Article  MATH  Google Scholar 

  4. Zhao Y, Collins EG. Robust automatic parallel parking in tight spaces via fuzzy logic. Rob Auton Syst. 2005;51(2–3):111–27. https://doi.org/10.1016/j.robot.2005.01.002.

    Article  Google Scholar 

  5. Chao CH, Ho CH, Lin SH, Li THS. Omni-directional vision-based parallel-parking control design for car-like mobile robot. IEEE Int Conf Mechatron. 2005. https://doi.org/10.1109/ICMECH.2005.1529319.

    Article  Google Scholar 

  6. Wang WC, Chen R. A vision-based fuzzy logic controller for backing-up an autonomous vehicle. J Intell Fuzzy Syst. 2008;19(4–5):273–84.

    MATH  Google Scholar 

  7. Panomruttanarug B, Higuchi K. Fuzzy logic based autonomous parallel parking system with Kalman filtering. SICE J Control Meas Syst Integr. 2010;3(4):266–71. https://doi.org/10.9746/jcmsi.3.266.

    Article  Google Scholar 

  8. Li THS, Yeh YC, Da Wu J, Hsiao MY, Chen CY. Multifunctional intelligent autonomous parking controllers for carlike mobile robots. IEEE Trans Ind Electron. 2010;57(5):1687–700. https://doi.org/10.1109/TIE.2009.2033093.

    Article  Google Scholar 

  9. Aye YY, Watanabe K, Maeyama S, Nagai I. Design of an image-based fuzzy controller for autonomous parking of four-wheeled mobile robots. Int J Appl Electromagn Mech. 2016;52(3–4):859–65. https://doi.org/10.3233/JAE-162180.

    Article  Google Scholar 

  10. Huang S-J, Hsu Y-S. Parking space detection and trajectory tracking control for vehicle auto-parking. Int J Mech Mechatron Eng. 2017;11(10):1712–8.

    Google Scholar 

  11. Demirli K, Khoshnejad M. Autonomous parallel parking of a car-like mobile robot by a neuro-fuzzy sensor-based controller. Fuzzy Sets Syst. 2009;160(19):2876–91. https://doi.org/10.1016/j.fss.2009.01.019.

    MathSciNet  Article  Google Scholar 

  12. Song J, Zhang W, Wu X, Cao H, Gao Q, Luo S. Laser-based SLAM automatic parallel parking path planning and tracking for passenger vehicle. IET Intell Transp Syst. 2019;13(10):1557–68. https://doi.org/10.1049/iet-its.2019.0049.

    Article  Google Scholar 

  13. Ye H, Jiang H, Ma S, Tang B, Wahab L. Linear model predictive control of automatic parking path tracking with soft constraints. Int J Adv Robot Syst. 2019;16(3):1–13. https://doi.org/10.1177/1729881419852201.

    Article  Google Scholar 

  14. Du X, Tan KK, Htet KKK. Autonomous reverse parking system-vision approach through ridge detector and Kalman filter. Int J Mechatronics Autom. 2015;5(1):22–33. https://doi.org/10.1504/IJMA.2015.068450.

    Article  Google Scholar 

  15. Du X, Tan KK. Autonomous reverse parking system based on robust path generation and improved sliding mode control. IEEE Trans Intell Transp Syst. 2015;16(3):1225–37. https://doi.org/10.1109/TITS.2014.2354423.

    Article  Google Scholar 

  16. Zhang P, et al. Reinforcement learning-based end-to-end parking for automatic parking system. Sensors (Switzerland). 2019. https://doi.org/10.3390/s19183996.

    Article  Google Scholar 

  17. Van Brummelen J, O’Brien M, Gruyer D, Najjaran H. Autonomous vehicle perception: The technology of today and tomorrow. Transp Res Part C Emerg Technol. 2018;89:384–406. https://doi.org/10.1016/j.trc.2018.02.012.

    Article  Google Scholar 

  18. Li W. Fuzzy-logic-based reactive behavior control of an autonomous mobile system in unknown environments. Eng Appl Artif Intell. 1994;7(5):521–31. https://doi.org/10.1016/0952-1976(94)90031-0.

    Article  Google Scholar 

  19. Joshi MM, Zaveri MA. Fuzzy based autonomous robot navigation system. Proc INDICON IEEE India Counc Conf. 2009. https://doi.org/10.1109/INDCON.2009.5409419.

    Article  Google Scholar 

  20. Dongshu W, Yusheng Z, Wenjie S. Behavior-based hierarchical fuzzy control for mobile robot navigation in dynamic environment. Proc Chin Control Decis Conf. 2011. https://doi.org/10.1109/CCDC.2011.5968614.

    Article  Google Scholar 

  21. Motlagh O, Tang SH, Ismail N, Ramli AR. An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets Syst. 2012;201:105–21. https://doi.org/10.1016/j.fss.2011.12.013.

    MathSciNet  Article  Google Scholar 

  22. Mo H, Tang Q, Meng L. Behavior-based fuzzy control for mobile robot navigation. Math Probl Eng. 2013. https://doi.org/10.1155/2013/561451.

    Article  MATH  Google Scholar 

  23. Mohanty PK, Parhi DR. Navigation of autonomous mobile robot using adaptive network based fuzzy inference system. J Mech Sci Technol. 2014;28(7):2861–8. https://doi.org/10.1007/s12206-014-0640-2.

    Article  Google Scholar 

  24. Omrane H, Masmoudi MS, Masmoudi M. Fuzzy logic based control for autonomous mobile robot navigation. Comput Intell Neurosci. 2016. https://doi.org/10.1155/2016/9548482.

    Article  Google Scholar 

  25. Fathinezhad F, Derhami V, Rezaeian M. Supervised fuzzy reinforcement learning for robot navigation. Appl Soft Comput J. 2016;40:33–41. https://doi.org/10.1016/j.asoc.2015.11.030.

    Article  Google Scholar 

  26. Xu WL, Tso SK. Sensor-based fuzzy reactive navigation of a mobile robot through local target switching. IEEE Trans Syst Man Cybern Part C. 1999;29(3):451–9. https://doi.org/10.1109/5326.777079.

    Article  Google Scholar 

  27. Song KT, Sheen LH. Heuristic fuzzy-neuro network and its application to reactive navigation of a mobile robot. Fuzzy Sets Syst. 2000;110(3):331–40. https://doi.org/10.1016/S0165-0114(97)00401-6.

    Article  Google Scholar 

  28. Antonelli G, Chiaverini S, Fusco G. A fuzzy-logic-based approach for mobile robot path tracking. IEEE Trans Fuzzy Syst. 2007;15(2):211–21. https://doi.org/10.1109/TFUZZ.2006.879998.

    Article  Google Scholar 

  29. Hwang CL, Shih CY. A distributed active-vision network-space approach for the navigation of a car-like wheeled robot. IEEE Trans Ind Electron. 2009;56(3):846–55. https://doi.org/10.1109/TIE.2008.2004388.

    Article  Google Scholar 

  30. Morales N, Arnay R, Toledo J, Morell A, Acosta L. Safe and reliable navigation in crowded unstructured pedestrian areas. Eng Appl Artif Intell. 2016;49:74–87. https://doi.org/10.1016/j.engappai.2015.11.008.

    Article  Google Scholar 

  31. Li B, et al. Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles: a lightweight iterative framework. IEEE Trans Intell Transp Syst. 2021. https://doi.org/10.1109/TITS.2021.3109011.

    Article  Google Scholar 

  32. Zhang Z, et al. A guaranteed collision-free trajectory planning method for autonomous parking. IET Intell Transp Syst. 2021;15(2):331–43. https://doi.org/10.1049/itr2.12028.

    Article  Google Scholar 

  33. Nakrani NM, Joshi MM. A human-like decision intelligence for obstacle avoidance in autonomous vehicle parking. Appl Intell. 2021. https://doi.org/10.1007/s10489-021-02653-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naitik M. Nakrani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Smart and Connected Electronic Systems” guest edited by Amlan Ganguly, Selcuk Kose, Amit M. Joshi, and Vineet Sahula.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakrani, N.M., Joshi, M.M. A Comparative Analysis Between Proposed Neuro-fuzzy, Fuzzy, and Heuristic-Neuro-fuzzy Controller for Autonomous Vehicle Parking in the Dynamic Environment. SN COMPUT. SCI. 3, 487 (2022). https://doi.org/10.1007/s42979-022-01382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01382-9

Keywords

  • Autonomous parallel parking
  • Control system design
  • Neuro-fuzzy
  • Dynamic environment