Skip to main content
Log in

Artificial Intelligence for Modelling the Wet Agglomeration Process of Fine Materials: A Survey

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Industrial plants often report under-capacity production, primarily due to limited knowledge of the dynamics of underlying size enlargement process. Many researchers have used different techniques to capture the nature of agglomeration system. However, there are still plenty of opportunities to model the process using powerful visualization and simulation tools to understand the process better and to improve its efficiency. Since the field of artificial intelligence (AI) has surfaced as a convincing alternative to handle vague, imprecise and complex non-linear systems, methods such as fuzzy logic, self organizing maps, artificial neural networks etc. can be used to model agglomeration process of fine materials. Present study tries to briefly discuss conventional modelling techniques and suggests new possibilities using artificial intelligence perspective to explore the domain of agglomeration. Since the AI-based techniques are often overlooked in the field of wet agglomeration due to lack of its technical knowledge and possible applications, our work presents highlights the effectiveness of these AI methodologies to solve a variety of problems in the said domain. This work will help the researchers to select appropriate AI method for a given agglomeration problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Litster J, Ennis B. The science and engineering of granulation processes, vol. 15. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

  2. Green DW, Perry RH. Perry’s chemical engineers’ handbook. 7th ed. New York: McGraw-Hill; 2008.

    Google Scholar 

  3. Wang FY, Zhang J, Litster JD, Cameron IT. Physically based dynamic models of granulation circuits for process control and system optimization. In: First International Particle Technology Forum, Colorado, USA, 1994.

  4. Cameron IT, Wang FY, Immanuel CD, Stepanek F. Process systems modelling and applications in granulation: a review. Chem Eng Sci. 2005;60(14):3723–50.

    Article  Google Scholar 

  5. Štěpánek F, Ansari MA. Computer simulation of granule microstructure formation. Chem Eng Sci. 2005;60(14):4019–29.

    Article  Google Scholar 

  6. Sastry KVS. Present status and future direction for the process engineering of agglomeration systems. In: Sixth International Symposium on Agglomeration, Nagoya, Japan, 1993; pp 37–45.

  7. Ogunnaike BA. Application of model based control to particulate processes. Queensland, Australia: In: Control of Particulate Processes VI; 1999.

  8. Wang FY, Cameron IT, Litster JD. Model structure selection for control and optimisation of continuous granulation processes: an overview. In: Control of Particulate Processes VI, Queensland, Australia; 1999.

  9. Wang FY, Cameron IT. Review and future directions in the modelling and control of continuous drum granulation. Powder Technol. 2002;124(3):238–53.

    Article  Google Scholar 

  10. Peter Dybdahl Hede. Modelling batch systems using population balances. Copenhagen: Bookboon; 2006.

    Google Scholar 

  11. Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 2001;117(1):3–39.

    Article  Google Scholar 

  12. Faure A, York P, Rowe RC. Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur J Pharm Biopharm. 2001;52(3):269–77.

    Article  Google Scholar 

  13. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27.

    Article  Google Scholar 

  14. Kohonen T. Self-organizing maps, vol. 30. Heidelberg: Springer; 2001.

    MATH  Google Scholar 

  15. Zadeh LA. Fuzzy sets. Inform Control. 1965;8(3):338–53.

    Article  MATH  Google Scholar 

  16. Cortes C, Vapnik Vladimir. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Article  MATH  Google Scholar 

  17. Newitt DM, Conway-Jones JM. A contribution to the theory and practice of granulation. Trans Inst Chem Eng. 1958;36:422.

    Google Scholar 

  18. Kapur PC, Fuerstenau DW. Kinetics of green pelletization. Trans AIME. 1964;229:348–55.

    Google Scholar 

  19. Kapur PC. Kinetics of granulation by non-random coalescence mechanism. Chem Eng Sci. 1972;27(10):1863–9.

    Article  Google Scholar 

  20. Sastry Kalanadh VS, Fuerstenau DW. Mechanisms of agglomerate growth in green pelletization. Powder Technol. 1973;7(2):97–105.

    Article  Google Scholar 

  21. Poon JM-H, Ramachandran R, Sanders CFW, Glaser T, Immanuel CD, Doyle FJ III, Litster JD, Stepanek F, Wang F-Y, Cameron IT. Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation. Chem Eng Sci. 2009;64(4):775–86.

    Article  Google Scholar 

  22. Pitt K, Peña R, Tew JD, Pal K, Smith R, Nagy ZK, Litster JD. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling. Powder Technol. 2018;326:327–43.

    Article  Google Scholar 

  23. Ramkrishna D. Population balances: theory and applications to particulate systems in engineering. San Diego: Academic Press; 2000.

    Google Scholar 

  24. Kapur PC, Fuerstenau DW. Coalescence model for granulation. Ind Eng Chem Process Des Dev. 1969;8(1):56–62.

    Article  Google Scholar 

  25. Adetayo AA, Litster JD, Pratsinis SE, Ennis BJ. Population balance modelling of drum granulation of materials with wide size distribution. Powder Technol. 1995;82(1):37–49.

    Article  Google Scholar 

  26. Christofides PD. Control of nonlinear distributed process systems: recent developments and challenges. AIChE J. 2001;47(3):514–8.

    Article  Google Scholar 

  27. Immanuel CD, Doyle FJ. Hierarchical multiobjective strategy for particle-size distribution control. AIChE J. 2003;49(9):2383–99.

    Article  Google Scholar 

  28. Iveson SM. Limitations of one-dimensional population balance models of wet granulation processes. Powder Technol. 2002;124(3):219–29.

    Article  Google Scholar 

  29. Biggs CA, Sanders C, Scott AC, Willemse AW, Hoffman AC, Instone T, Salman AD, Hounslow MJ. Coupling granule properties and granulation rates in high-shear granulation. Powder Technol. 2003;130(1):162–8.

    Article  Google Scholar 

  30. Wang FY, Cameron IT. A multi-form modelling approach to the dynamics and control of drum granulation processes. Powder Technol. 2007;179(1):2–11.

    Article  Google Scholar 

  31. Mishra BK, Thornton C, Bhimji D. A preliminary numerical investigation of agglomeration in a rotary drum. Miner Eng. 2002;15(1):27–33.

    Article  Google Scholar 

  32. Lipps DM, Sakr AM. Characterization of wet granulation process parameters using response surface methodology. 1 top-spray fluidized bed. J Pharm Sci. 1994;83(7):937–47.

    Article  Google Scholar 

  33. Miyamoto Y, Ogawa S, Miyajima M, Matsui M, Sato H, Takayama K, Nagai T. An application of the computer optimization technique to wet granulation process involving explosive growth of particles. Int J Pharm. 1997;149(1):25–36.

    Article  Google Scholar 

  34. Paterakis PG, Korakianiti ES, Dallas PP, Rekkas DM. Evaluation and simultaneous optimization of some pellets characteristics using a 33 factorial design and the desirability function. Int J Pharm. 2002;248(1):51–60.

    Article  Google Scholar 

  35. Braumann A, Kraft M. Incorporating experimental uncertainties into multivariate granulation modelling. Chem Eng Sci. 2010;65(3):1088–100.

    Article  Google Scholar 

  36. Thella JS, Venugopal R. Modeling of iron ore pelletization using \(3^{**(k-p)}\) factorial design of experiments and polynomial surface regression methodology. Powder Technol. 2011;211(1):54–9.

  37. Rambali B, Baert L, Massart DL. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale. Int J Pharm. 2001;220(1):149–60.

    Article  Google Scholar 

  38. Rambali B, Van Aelst S, Baert L, Massart DL. Using deepest regression method for optimization of fluidized bed granulation on semi-full scale. Int J Pharm. 2003;258(1):85–94.

    Article  Google Scholar 

  39. Narvanen T, Lipsanen T, Antikainen O, Raikkonen H, Yliruusi J. Controlling granule size by granulation liquid feed pulsing. Int J Pharm. 2008;357(1):132–8.

    Article  Google Scholar 

  40. Arshadi M, Gref R, Geladi P, Dahlqvist S-A, Lestander T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process Technol. 2008;89(12):1442–7.

    Article  Google Scholar 

  41. Yadav AM, Nikkam S, Gajbhiye P, Tyeb MH. Modeling and optimization of coal oil agglomeration using response surface methodology and artificial neural network approaches. Int J Miner Process. 2017;163:55–63.

    Article  Google Scholar 

  42. Yadav AM, Chaurasia RC, Suresh N, Gajbhiye P. Application of artificial neural networks and response surface methodology approaches for the prediction of oil agglomeration process. Fuel. 2018;220:826–36.

    Article  Google Scholar 

  43. Vats T, Shah N, Shah S. Pelletization techniques: a review. J Pharm Sci Biosci Res. 2015;5(3):247–8.

    Google Scholar 

  44. Russel S, Norvig P, et al. Artificial intelligence: a modern approach. London: Pearson Education Limited; 2013.

    Google Scholar 

  45. Murtoniemi E, Yliruusi J, Kinnunen P, Merkku P, Leiviskä K. The advantages by the use of neural networks in modelling the fluidized bed granulation process. Int J Pharm. 1994;108(2):155–64.

    Article  Google Scholar 

  46. Watano S, Takashima H, Miyanami Kei. Scale-up of agitation fluidized bed granulation by neural network. Chem Pharm Bull. 1997;45(7):1193–7.

    Article  Google Scholar 

  47. Behzadi SS, Klocker J, Hüttlin H, Wolschann P, Viernstein H. Validation of fluid bed granulation utilizing artificial neural network. Int J Pharm. 2005;291(1):139–48.

    Article  Google Scholar 

  48. Behzadi SS, Prakasvudhisarn C, Klocker J, Wolschann P, Viernstein H. Comparison between two types of artificial neural networks used for validation of pharmaceutical processes. Powder Technol. 2009;195(2):150–7.

    Article  Google Scholar 

  49. Petrović J, Chansanroj K, Meier B, Ibrić S, Betz Gabriele. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Eur J Pharm Sci. 2011;44(3):227–34.

    Article  Google Scholar 

  50. Yu H, Fu J, Dang L, Cheong Y, Tan H, Wei H. Prediction of the particle size distribution parameters in a high shear granulation process using a key parameter definition combined artificial neural network model. Ind Eng Chem Res. 2015;54(43):10825–34.

    Article  Google Scholar 

  51. Wafa’H A, Mahfouf M, Salman AD. Predictive modelling of the granulation process using a systems-engineering approach. Powder Technol. 2016;302:265–74.

    Article  Google Scholar 

  52. Shirazian S, Kuhs M, Darwish S, Croker D, Walker GM. Artificial neural network modelling of continuous wet granulation using a twin-screw extruder. Int J Pharm. 2017;521(1):102–9.

    Article  Google Scholar 

  53. Nadeem M, Banka H, Venugopal R. Estimation of pellet size and strength of limestone and manganese concentrate using soft computing techniques. Appl Soft Comput. 2017;59:500–11.

    Article  Google Scholar 

  54. Nadeem M, Banka H, Venugopal R. A neural network-based approach for steady-state modelling and simulation of continuous balling process. Soft Comput. 2016;22:1–15.

    Google Scholar 

  55. Ismail HY, Singh M, Darwish S, Kuhs M, Shirazian S, Croker DM, Khraisheh M, Albadarin AB, Walker GM. Developing ANN-kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol. 2019;343:568–77.

    Article  Google Scholar 

  56. Ismail HY, Singh M, Shirazian S, Albadarin AB, Walker GM. Development of high-performance hybrid ann-finite volume scheme (ann-fvs) for simulation of pharmaceutical continuous granulation. Chem Eng Res Des. 2020;163:320–6.

    Article  Google Scholar 

  57. Sampat C, Ramachandran Rohit. Identification of granule growth regimes in high shear wet granulation processes using a physics-constrained neural network. Processes. 2021;9(5):737.

    Article  Google Scholar 

  58. Watano S, Numa T, Miyanami K, Osako Yoshifumi. A fuzzy control system of high shear granulation using image processing. Powder Technol. 2001;115(2):124–30.

    Article  Google Scholar 

  59. Watano Satoru. Direct control of wet granulation processes by image processing system. Powder Technol. 2001;117(1):163–72.

    Article  Google Scholar 

  60. Wang Z, He D, Zhu X, Luo J, Liang Y, Wang X. Data-driven model-free adaptive control of particle quality in drug development phase of spray fluidized-bed granulation process. Complexity, 2017, 2017.

  61. Wafa’H AA, Khorsheed B, Mahfouf M, Reynolds GK, Salman AD. An interpretable fuzzy logic based data-driven model for the twin screw granulation process. Powder Technol. 2020;364:135–44.

    Article  Google Scholar 

  62. Wafa’H AA, Mahfouf M, Salman AD. When swarm meets fuzzy logic: batch optimisation for the production of pharmaceuticals. Powder Technol. 2021;379:174–83.

    Article  Google Scholar 

  63. Rantanen JT, Laine SJ, Antikainen OK, Mannermaa J-P, Simula OE, Yliruusi JK. Visualization of fluid-bed granulation with self-organizing maps. J Pharm Biomed Anal. 2001;24(3):343–52.

    Article  Google Scholar 

  64. Nadeem M, Banka H, Venugopal R. Svm-based predictive modelling of wet pelletization using experimental and ga-based synthetic data. Arab J Sci Eng. 2016;41(3):1053–65.

    Article  Google Scholar 

  65. Nadeem M, Banka H, Venugopal R. Comparison of multilayer perceptron (mlp) and support vector machine (svm) in predicting green pellet characteristics of manganese concentrate. In: Proceedings of Fifth International Conference on Soft Computing for Problem Solving, Springer, 2016; pp 311–320.

  66. Garg A, Lam JSL, Panda BN. A hybrid computational intelligence framework in modelling of coal-oil agglomeration phenomenon. Appl Soft Comput. 2017;55:402–12.

    Article  Google Scholar 

  67. Skapura D, Freeman JA. Neural networks algorithms, applications, and programming techniques. Massachusetts: Addison-Wesley Publishing Company; 1991.

    MATH  Google Scholar 

  68. Rojas R. Neural networks: a systematic introduction. Berlin: Springer Science & Business Media; 2013.

    MATH  Google Scholar 

  69. Specht DF. A general regression neural network. IEEE Trans Neural Netw. 1991;2(6):568–76.

    Article  Google Scholar 

  70. Moody J, Darken CJ. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989;1(2):281–94.

    Article  Google Scholar 

  71. Lee KH. First course on fuzzy theory and applications, vol. 27. Heidelberg: Springer; 2006.

    Google Scholar 

  72. Watano S, Fukushima Toru, Miyanami K. Application of fuzzy logic to bed height control in agitation-fluidized bed granulation. Powder Technol. 1994;81(2):161–8.

    Article  Google Scholar 

  73. Watano S, Sato Y, Miyanami K. Control of granule growth in fluidized bed granulation by an image processing system. Chem Pharm Bull. 1996;44(8):1556–60.

    Article  Google Scholar 

  74. Kohonen T. Essentials of the self-organizing map. Neural Netw. 2013;37:52–65.

    Article  Google Scholar 

  75. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Belmont: CRC Press; 1984.

    MATH  Google Scholar 

  76. Mitchell TM. Machine learning. New York: McGraw Hill; 1997.

    MATH  Google Scholar 

  77. Chandra B, Varghese PP. Moving towards efficient decision tree construction. Inform Sci. 2009;179(8):1059–69.

    Article  MATH  Google Scholar 

  78. Han J, Kamber Micheline, Pei J. Data mining: concepts and techniques. Massachusetts: Morgan Kaufmann; 2006.

    MATH  Google Scholar 

  79. Dash M, Liu H. Feature selection for classification. Intell Data Anal. 1997;1(3):131–56.

    Article  Google Scholar 

  80. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.

    MATH  Google Scholar 

  81. Liu Huan, Lei Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng. 2005;17(4):491–502.

    Article  MathSciNet  Google Scholar 

  82. Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97(1):245–71.

    Article  MathSciNet  MATH  Google Scholar 

  83. Zurada JM, Malinowski A, Usui S. Perturbation method for deleting redundant inputs of perceptron networks. Neurocomputing. 1997;14(2):177–93.

    Article  Google Scholar 

  84. Pedrycz W. Why triangular membership functions? Fuzzy Sets Syst. 1994;64(1):21–30.

    Article  MathSciNet  Google Scholar 

  85. Atanassov KT. Intuitionistic fuzzy logics. Berlin: Springer; 2017.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nadeem.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, M., Banka, H., Venugopal, R. et al. Artificial Intelligence for Modelling the Wet Agglomeration Process of Fine Materials: A Survey. SN COMPUT. SCI. 3, 467 (2022). https://doi.org/10.1007/s42979-022-01368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01368-7

Keywords

Navigation