Skip to main content
Log in

Performance Evaluation of Multiband Embroidered Fractal Antenna on Human Body

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Several recent technologies are emerging that integrate the wearable system with antenna technology. The wearable antennas embedded into textiles are the most promising and fully integrative ones in the field of Wireless Body Area Networks (WBAN). In this paper, a fully textile wearable antenna operating at 2.4 GHz with Minkowski fractal design is presented. The antenna is fabricated using a pure silver conductive thread on the polyester substrate using the embroidery technique. The design is simulated using a 3D full-wave electromagnetic simulation tool. The antenna is placed onto the human body to obtain a Specific Absorption Rate (SAR) results. Simulation results are demonstrated using different antenna parameters like S11, return loss, VSWR, gain, and directivity. Simulation and measured results depict the multiband antenna performance for various applications with four resonant frequencies 2.68, 4.06, 4.32, and 4.46 GHz. The SAR value for the simulated embroidered textile fractal antenna is 1.32 W/Kg when placed along with the realistic human male torso model in HFSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Leng T, Huang X, Chang KH, Chen JC, Abdalla MA, Zhirun H. Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas Wirel Propag Lett. 2016;15:1565–15689.

    Article  Google Scholar 

  2. Abutarboush Hattan F, Farooqui MF, Shamim A. Inkjet-printed wideband antenna on resin-coated paper substrate for curved wireless devices. IEEE Antennas Wirel Propag Lett. 2016;15:20–239.

    Google Scholar 

  3. Durgun AC, Reese MS, Balanis CA, Birtcher CR, Allee DR, Venugopal S. Design, simulation, fabrication and testing of flexible bowtie antennas. IEEE Trans Antennas Propag. 2011;59(12):4425–35.

    Article  Google Scholar 

  4. Hamouda Z, Wojkiewicz JL, Pud AA, Kone L, Belaabed B, Bergheul S, Lasri T. Dual band elliptical planar conductive polymer antenna printed on a flexible substrate. IEEE Trans Antennas Propag. 2015;63(12):5864–7.

    Article  MathSciNet  MATH  Google Scholar 

  5. Janeczek K, Jakubowska M, Koziol G, Mlozniak A, Arazna A. Investigation of ultra high frequency antennas printed with polymer pastes on flexible substrates. IET Microw Antennas Propag. 2012;6(5):594–554.

    Article  Google Scholar 

  6. Hong S, Kang SH, Kim Y, Jung CW. Transparent and flexible antenna for wearable glasses applications. IEEE Trans Antennas Propag. 2016;64(7):2797–804.

    Article  Google Scholar 

  7. Khaleel Haider R, Al-Rizzo Hussain M, Rucker Daniel G, Seshadri M. A compact polyimide based UWB antenna for flexible electronics. IEEE Antennas Wirel Propag Lett. 2012;11:564–7.

    Article  Google Scholar 

  8. Zahran SR, Abdalla M. Novel flexible antenna for UWB applications. In: IEEE APS International Antenna and Propagation Symposium Digest, Vancouver, Canada, July 2015. p. 147–8.

  9. Abbasi QH, Ur Rehman M, Yang X, Alomainy A, Qaraqe K, Serpedin E. Ultrawideband band-notched flexible antenna for wearable applications. IEEE Antennas Wirel Propag Lett. 2013;12:1606–9.

    Article  Google Scholar 

  10. Kiourti A, Lee C, Volakis JL. Fabrication of textile antennas and circuits with 0.1 mm precision. IEEE Antennas Wirel Propag Lett. 2016;15:151–3.

    Article  Google Scholar 

  11. Sun Y, Cheung SW, Yuk TI. Design of a textile ultra wideband antenna with stable performance for body centric wireless communications. IET Microw Antennas Propag. 2014;8(15):1363–75.

    Article  Google Scholar 

  12. Amaro N, Mendes C, Pinho P. Bending effects on a textile microstrip antenna. In: IEEE International Symposium on Antennas and Propagation (APSURSI), 3–8 July, 2011.

  13. Khaleel HR. Design and fabrication of compact inkjet printed antennas for integrate within flexible and wearable electronics. IEEE Trans Compon Packag Manuf Technol. 2014;4(10):1722–8.

    Article  Google Scholar 

  14. Whittow WG, Chauraya A, Vardaxoglou JC, Li Y, Torah R, Yang K, Beeby S, Tudor J. Inkjet printed microstrip patch antennas realized on textile for wearable applications. IEEE Antennas Wirel Propag Lett. 2014;13:71–4.

    Article  Google Scholar 

  15. Ahmed S, Tahir FA, Shamim A, Cheema HM. A compact Kapton based inkjet printed multiband antenna for flexible wireless devices. IEEE Antennas Wirel Propag Lett. 2015;14:1802–5.

    Article  Google Scholar 

  16. Elias NA, Samsuri NA, Rahim MKA, Othman N, Jalil ME. Effects of human body and antenna orientation on dipole textile antenna performance and SAR. In: IEEE Asia Pacific Conference on Applied Electro magnetics (APACE), Melaka, Malaysia December 11–13, 2012.

  17. Gil I, Fernandez-Garcia R. SAR impact evaluation on jeans wearable antennas. In: 11th European Conference on Antennas and Propagation (EUCAP), 2017.

  18. Ikbal Hossain D, Iqbal Faruque MR, Tariqul Islam M. Investigation of hand impact on PIFA performances and SAR in human head. Sci Direct J Appl Res Technol. 2015;13:447–53.

    Article  Google Scholar 

  19. Amin Khan Md, Bashir S, Ullah F. Electromagnetic bandgap wearable dipole antenna with low specific absorption rate. In: International Conference on Computing, Mathematics and Engineering Technologies, iCoMET, 2018.

  20. Ramli MN, Soh PJ, Rahim HA, Jam-los MF, Giman FN, Ezzaty, Nor Mohd Hussin F, Lago H, Van Lil E. SAR for wearable antennas with AMC made using PDMS and textiles. In: 32nd URSI GASS, Montreal August, 19–26, 2017.

  21. Balanis CA. Antenna theory analysis and design. 3rd ed. New York: Wiley; 2011.

    Google Scholar 

  22. Garg R. Microstrip antenna design handbook. Boston, London: Artech House; 2001.

    Google Scholar 

  23. Jalil ME, Rahim MKA, Samsuri N, Asmawati M, Noor MH, Kamardin K, Abdullah A. Fractal Koch multiband textile antenna performance with bending, wet conditions and on the human body. Prog Electromagn Res. 2013;140:633–52. https://doi.org/10.2528/PIER13041212.

    Article  Google Scholar 

  24. Kaur H, Chawla P. Recent advances in wearable antennas: a survey. In: Anandan R, Gopalakrishnan S, Pal S, Zaman N, editors. Industrial Internet of Things (IIoT): intelligent analytics for predictive maintenance. Wiley; 2022. p. 149–802022. https://doi.org/10.1002/9781119769026.ch6.

  25. Badisa A, Madhav BTP, Prudhvi Nadh B. A circularly polarized, flexible and compact quad band wearable antenna for off body communication applications. J Circuits Syst Comput. 2022;31(03):2250057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansi Subhedar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Security for Communication and Computing Application” guest edited by Karan Singh, Ali Ahmadian, Ahmed Mohamed Aziz Ismail, R S Yadav, Md. Akbar Hossain, D. K. Lobiyal, Mohamed Abdel-Basset, Soheil Salahshour, Anura P. Jayasumana, Satya P. Singh, Walid Osamy, Mehdi Salimi and Norazak Senu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gite, S., Subhedar, M. Performance Evaluation of Multiband Embroidered Fractal Antenna on Human Body. SN COMPUT. SCI. 3, 459 (2022). https://doi.org/10.1007/s42979-022-01354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01354-z

Keywords

Navigation