Mondal MA, Rehena Z. Intelligent traffic congestion classification system using artificial neural network. In: Companion Proceedings of the 2019 world wide web conference. Association for Computing Machinery, New York, NY, USA. 2019. pp. 110–6. https://doi.org/10.1145/3308560.3317053.
Monzon A. Smart cities concept and challenges: Bases for the assessment of smart city projects. In: 2015 international conference on smart cities and green ICT systems (SMARTGREENS). 2015. pp. 1–11.
Mondal MA, Rehena Z. An IoT-based congestion control framework for intelligent traffic management system. In: Chiplunkar NN, Fukao T, editors. Advances in artificial intelligence and data engineering. Singapore: Springer; 2021. p. 1287–97.
Chapter
Google Scholar
Rawal T. Intelligent transportation system in India—a review. J Dev Manag Commun. 2015;2:299.
Google Scholar
Tarnoff PJ, Ordonez J. Signal timing practices and procedures-state of the practice. In: Transportation Research Board. 2005.
Bandra J. Traffic highway capacity design-traffic signal design. In: Traffic signal design. 2002.
Zhao D, Dai Y, Zhang Z. Computational intelligence in urban traffic signal control: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev). 2012;42(4):485–94. https://doi.org/10.1109/TSMCC.2011.2161577.
Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y. Review of road traffic control strategies. Proc IEEE. 2003;91(12):2043–67. https://doi.org/10.1109/JPROC.2003.819610.
Article
Google Scholar
Ribeiro IM, de Lurdes de Oliveira Simões M. The fully actuated traffic control problem solved by global optimization and complementarity. Eng Optim. 2016;48(2):199–212. https://doi.org/10.1080/0305215X.2014.995644.
MathSciNet
Article
Google Scholar
Webster FV. Traffic signal setting. Road Research Laboratory. 1958. pp. 1–44.
Miller AJ. Settings for fixed-cycle traffic signals. J Oper Res Soc. 1963;14(4):373–86. https://doi.org/10.1057/jors.1963.61.
Article
Google Scholar
Araghi S, Khosravi A, Creighton D. Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Expert Syst. Appl. 2015. https://doi.org/10.1016/j.eswa.2015.01.063.
Jin J, Ma X, Kosonen I. An intelligent control system for traffic lights with simulation-based evaluation. Control Eng Pract. 2017;58:24–33. https://doi.org/10.1016/j.conengprac.2016.09.009.
Article
Google Scholar
Araghi S, Khosravi A, Creighton D, Nahavandi S. Influence of meta-heuristic optimization on the performance of adaptive interval type2-fuzzy traffic signal controllers. Expert Syst Appl. 2017;71(C):493–503. https://doi.org/10.1016/j.eswa.2016.10.066.
Article
Google Scholar
Miletić M, Kapusta B, Ivanjko E. Comparison of two approaches for preemptive traffic light control. In: 2018 international symposium ELMAR. 2018. pp. 57–62. https://doi.org/10.23919/ELMAR.2018.8534608.
Wei H, Zheng G, Yao H, Li Z. Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’18. Association for Computing Machinery, New York, NY, USA. 2018. pp. 2496–505. https://doi.org/10.1145/3219819.3220096.
Garg D, Chli M, Vogiatzis G. Deep reinforcement learning for autonomous traffic light control. In: 2018 3rd IEEE international conference on intelligent transportation engineering (ICITE). 2018. pp. 214–8. https://doi.org/10.1109/ICITE.2018.8492537.
Yu D, Tian X, Xing X, Gao S. Signal timing optimization based on fuzzy compromise programming for isolated signalized intersection. Math Probl Eng. 2016;2016:1–12. https://doi.org/10.1155/2016/1682394.
MathSciNet
Article
MATH
Google Scholar
Li Z, Schonfeld P. Hybrid simulated annealing and genetic algorithm for optimizing arterial signal timings under oversaturated traffic conditions. J Adv Transp. 2014. https://doi.org/10.1002/atr.1274.
Gökçe M, Oner E, Ik G. Traffic signal optimization with particle swarm optimization for signalized roundabouts. Simulation. 2015;91:456–66. https://doi.org/10.1177/0037549715581473.
Dabiri S, Abbas M. Arterial traffic signal optimization using particle swarm optimization in an integrated vissim-matlab simulation environment. 2016. pp. 766–71. https://doi.org/10.1109/ITSC.2016.7795641.
Panovski D, Zaharia T. Simulation-based vehicular traffic lights optimization. In: 2016 12th international conference on signal-image technology internet-based systems (SITIS). 2016. pp. 258–65. https://doi.org/10.1109/SITIS.2016.49.
Gao K, Zhang Y, Sadollah A, Su R. Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search. Appl Soft Comput. 2016. https://doi.org/10.1016/j.asoc.2016.07.029.
Eddelbuttel J, Cremer M. A new algorithm for optimal signal control in congested networks. J Adv Transp. 1994;28:275–97.
Article
Google Scholar
He Q, Kamineni R, Zhang Z. Traffic signal control with partial grade separation for oversaturated conditions. Transp Res Part C Emerg Technol. 2016;71:267–83. https://doi.org/10.1016/j.trc.2016.08.001.
Article
Google Scholar
Mehrabipour M, Hajbabaie A. A cell-based distributed-coordinated approach for network-level signal timing optimization. Comput Aided Civ Infrastruct Eng. 2017;32:599–616. https://doi.org/10.1111/mice.12272.
Article
Google Scholar
Köhler E, Strehler M. Traffic signal optimization: combining static and dynamic models. Transp Sci. 2018. https://doi.org/10.1287/trsc.2017.0760.
Yan H, He F, Lin X, Yu J, Li M, Wang Y. Network-level multiband signal coordination scheme based on vehicle trajectory data. Transp Res Part C Emerg Technol. 2019;107:266–86. https://doi.org/10.1016/j.trc.2019.08.014.
Article
Google Scholar
Swaminathan S, Venkatesan P. Embedded traffic control system using wireless ad hoc sensors. 2014. p. 225–7.
Lopes J, Bento J, Huang E, Antoniou C, Ben-Akiva M. Traffic and mobility data collection for real-time applications. In: 13th international IEEE conference on intelligent transportation systems. 2010. pp. 216–23. https://doi.org/10.1109/ITSC.2010.5625282.
Sumalee A, Ho HW. Smarter and more connected: future intelligent transportation system. IATSS Res. 2018;42(2):67–71. https://doi.org/10.1016/j.iatssr.2018.05.005.
Article
Google Scholar