Skip to main content
Log in

Interactive Visualization and Computation of 2D and 3D Probability Distributions

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Mathematical modeling, probability estimation, and statistical inference represent core elements of modern artificial intelligence (AI) approaches for data-driven prediction, forecasting, classification, risk estimation, and prognosis. Currently, there are many tools that help calculate and visualize univariate probability distributions. However, very few resources venture beyond into multivariate distributions, which are commonly used in advanced statistical inference and AI decision-making. This article presents a new web-calculator that enables some calculation and visualization of bivariate and trivariate probability distributions. Several methods are explored to compute the joint bivariate and trivariate probability densities, including the optimal multivariate modeling using Gaussian copula. We developed an interactive webapp to visually illustrate the parallels between the mathematical formulation, computational implementation, and graphical depiction of multivariate probability density and cumulative distribution functions. To ensure the interface and functionality are hardware platform independent, scalable, and functional, the app and its component widgets are implemented using HTML5 and JavaScript. We validated the webapp by testing the multivariate copula models under different experimental conditions and inspecting the performance in terms of accuracy and reliability of the estimated multivariate probability densities and distribution function values. This article demonstrates the construction, implementation, and utilization of multivariate probability calculators. The proposed webapp implementation is freely available online (https://socr.umich.edu/HTML5/BivariateNormal/BVN2/) and can be used to assist with education and research of a diverse array of data scientists, STEM instructors, and AI learners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

NA.

Code availability

All code is publicly available via the Project GitHub repository.

References

  1. Arnold KF, et al. Reflections on modern methods: generalized linear models for prognosis and intervention—theory, practice and implications for machine learning. Int J Epidemiol. 2020;49:2074–82.

    Article  Google Scholar 

  2. Syam N, Sharma A. Waiting for a sales renaissance in the fourth industrial revolution: machine learning and artificial intelligence in sales research and practice. Ind Mark Manag. 2018;69:135–46.

    Article  Google Scholar 

  3. King AJ, Streltchenko O, Yesha Y. Using multi-agent simulation to understand trading dynamics of a derivatives market. Ann Math Artif Intell. 2005;44(3):233–53.

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang S, et al. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 2020;471:61–71.

    Article  Google Scholar 

  5. Brynjolfsson E, Rock D, Syverson C. 1. Artificial intelligence and the modern productivity paradox: a clash of expectations and statistics. University of Chicago Press; 2019.

    Book  Google Scholar 

  6. Brown S. The Innovation Ultimatum: How six strategic technologies will reshape every business in the 2020s. Wiley; 2020.

    Google Scholar 

  7. Dinov I, Siegrist K, Pearl DK, Kalinin A, Christou N. Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions. Comput Stat. 2015;594:1–19.

    MATH  Google Scholar 

  8. Leemis LM, McQueston JT. Univariate distribution relationships. Am Stat. 2008;62(1):45–53.

    Article  MathSciNet  Google Scholar 

  9. Al-Aziz J, Christou N, Dinov I. SOCR motion charts: an efficient, open-source, interactive and dynamic applet for visualizing longitudinal multivariate data. JSE. 2010;18(3):1–29.

    Google Scholar 

  10. Zhou H, Li L, Zhu H. Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc. 2013;108(502):540–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. Clark JS. Models for ecological data. Princeton University Press; 2020.

    Book  Google Scholar 

  12. Drezner Z, Farnum N. A generalized binomial distribution. Commun Stat-Theory Methods. 1993;22(11):3051–63.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinov I, Christou N, Gould R. Law of large numbers: the theory, applications and technology-based education. J Stat Educ. 2009;17(1):1–15.

    Article  Google Scholar 

  14. Dinov I, Christou N, Sanchez J. Central limit theorem: new SOCR applet and demonstration activity. J Stat Educ. 2008;16(2):1–12.

    Article  Google Scholar 

  15. Keller JB. A characterization of the Poisson distribution and the probability of winning a game. Am Stat. 1994;48(4):294–8.

    MathSciNet  Google Scholar 

  16. Montgomery DC, Runger GC. Applied statistics and probability for engineers. Wiley; 2010.

    MATH  Google Scholar 

  17. De Moivre A. The doctrine of chances: or, A method of calculating the probability of events in play. 1718; W. Pearson.

  18. Bernoulli J. Ars coniectandi. 1713: Impensis Thurnisiorum, fratrum.

  19. Edwards A. The meaning of binomial distribution. Nature. 1960;186(4730):1074–1074.

    Article  MATH  Google Scholar 

  20. Poisson SD. Traité de mécanique, vol. 2. Société belge de librairie; 1838.

    Google Scholar 

  21. Clarke R. An application of the Poisson distribution. J Inst Actuar. 1946;72(3):481–481.

    Article  Google Scholar 

  22. Gómez-Déniz E. Another generalization of the geometric distribution. TEST. 2010;19(2):399–415.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lotka AJ. Elements of physical biology. Williams & Wilkins; 1925.

    MATH  Google Scholar 

  24. Volterra V. Fluctuations in the abundance of a species considered mathematically 1. Nature Publishing Group; 1926.

    MATH  Google Scholar 

  25. Balakrishna N, Lai CD. Distributions expressed as copulas, in continuous bivariate distributions: second edition. New York: Springer New York; 2009. p. 67–103.

    Book  Google Scholar 

  26. Trivedi PK, Zimmer DM. Copula modeling: an introduction for practitioners. Now Publishers Inc.; 2007.

    MATH  Google Scholar 

  27. Tsukahara H. Semiparametric estimation in copula models. Can J Stat. 2005;33(3):357–75.

    Article  MathSciNet  MATH  Google Scholar 

  28. Choroś B, Ibragimov R, Permiakova E. Copula estimation, in Copula theory and its applications. Springer; 2010. p. 77–91.

    Book  Google Scholar 

  29. Sklar M. Fonctions de repartition an dimensions et leurs marges. Publ inst statist univ Paris. 1959;8:229–31.

    MathSciNet  MATH  Google Scholar 

  30. Durante F, Fernandez-Sanchez J, Sempi C. A topological proof of Sklar’s theorem. Appl Math Lett. 2013;26(9):945–8.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolesárová A, Mesiar R, Saminger-Platz S. Generalized Farlie-Gumbel-Morgenstern copulas. Cham: Springer International Publishing; 2018.

    Book  MATH  Google Scholar 

  32. Arfken GB, Weber HJ, Harris FE. Chapter 14 - Bessel Functions. In: Arfken GB, Weber HJ, Harris FE, editors. Mathematical Methods for Physicists (Seventh Edition). Boston: Academic Press; 2013. p. 643–713.

    Chapter  Google Scholar 

  33. Abramowitz M, Stegun IA. Modified Bessel functions I and K. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, 1972: p. 374–377.

  34. Dinov ID, Velev MV. Data science: time complexity, inferential uncertainty, and spacekime analytics. 1 ed. STEM Series. 2021; Berlin/Boston: De Gruyter, ISBN 9783110697803.

  35. Xue-Kun Song P. Multivariate dispersion models generated from Gaussian copula. Scand J Stat. 2000;27(2):305–20.

    Article  MathSciNet  MATH  Google Scholar 

  36. Pitt M, Chan D, Kohn R. Efficient Bayesian inference for Gaussian copula regression models. Biometrika. 2006;93(3):537–54.

    Article  MathSciNet  MATH  Google Scholar 

  37. Strecok AJ. On the calculation of the Inverse of the Error Function. Math Comput. 1968;22(101):144–58.

    MathSciNet  MATH  Google Scholar 

  38. Masarotto G, Varin C. Gaussian copula regression in R. J Stat Softw. 2017;77(8):1–26.

    Article  MATH  Google Scholar 

  39. Arbenz P. Bayesian copulae distributions, with application to operational risk management—some comments. Methodol Comput Appl Probab. 2013;15(1):105–8.

    Article  MathSciNet  MATH  Google Scholar 

  40. Andersen L, Sidenius J. Extensions to the Gaussian copula: Random recovery and random factor loadings. J Credit Risk. 2004;1(1):05.

    Google Scholar 

  41. Holst E, Jorgensen K, Natalski I. The bivariate normal distribution. Copenhagen: AMI, National Institute of Occupational Health; 1999.

    Google Scholar 

  42. Rose C, Smith MD. Random [Title]: manipulating probability density functions. Comput Econ Finance Model Anal Math. 1996;2:416.

    Article  Google Scholar 

  43. SOCR. SOCR Randomization and Resampling Inference Framework: Technical Documentation. 2014; http://wiki.stat.ucla.edu/socr/index.php/SOCR_ResamplingSimulation_Docs. Accessed 2 June 2022.

  44. Dinov I, Christou N. Statistics Online Computational Resource for Education. Teach Stat. 2009;31(2):49–51.

    Article  Google Scholar 

  45. Chu A, Cui J, Dinov I. SOCR analyses: implementation and demonstration of a new graphical statistics educational toolkit. JSS. 2009;30(3):1–19.

    Google Scholar 

  46. Stathopoulos V, Girolami MA. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Philos Trans R Soc A Math Phys Eng Sci. 2013;371(1984):20110541.

    Article  MathSciNet  MATH  Google Scholar 

  47. Mooney CZ. Monte Carlo simulation, vol. 116. Sage Publications, Incorporated; 1997.

    Book  MATH  Google Scholar 

  48. Trinh G, Genz A. Bivariate conditioning approximations for multivariate normal probabilities. Stat Comput. 2015;25(5):989–96.

    Article  MathSciNet  MATH  Google Scholar 

  49. Botev ZI. The normal law under linear restrictions: simulation and estimation via minimax tilting. J R Stat Soc Ser B (Statistical Methodology). 2017;79(1):125–48.

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang M, Kennedy W. A numerical method for accurately approximating multivariate normal probabilities. Comput Stat Data Anal. 1992;13(2):197–210.

    Article  MATH  Google Scholar 

  51. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2018) Available online at https://www.R-project.org/.

  52. Dinov I. Data science and predictive analytics: biomedical and health applications using R. computer science. Springer International Publishing; 2018. p. 800.

    Book  Google Scholar 

  53. Van der Walt S, et al. scikit-image: image processing in Python. PeerJ. 2014;2: e453.

    Article  Google Scholar 

  54. Danaher PJ, Smith MS. Modeling multivariate distributions using copulas: applications in marketing. Mark Sci. 2011;30(1):4–21.

    Article  Google Scholar 

  55. Joe H. Dependence modeling with copulas. CRC Press; 2014.

    Book  MATH  Google Scholar 

  56. Zhang Y, et al. Reliability analysis with consideration of asymmetrically dependent variables: discussion and application to geotechnical examples. Reliab Eng Syst Saf. 2019;185:261–77.

    Article  Google Scholar 

  57. Schoelzel C, Friederichs P. Multivariate non-normally distributed random variables in climate research–introduction to the copula approach. Nonlinear Process Geophys. 2008;15(5):761–72.

    Article  Google Scholar 

  58. Chen X, Fan Y. Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. J Economet. 2006;135(1–2):125–54.

    Article  MathSciNet  MATH  Google Scholar 

  59. Mai JF, Scherer, M. Simulating copulas: stochastic models, sampling algorithms, and applications, World Scientific Publishing, Series on Quantitative Finance. 2017;6. ISBN 9813149264.

  60. Patton AJ. A review of copula models for economic time series. J Multivar Anal. 2012;110:4–18.

    Article  MathSciNet  MATH  Google Scholar 

  61. Hafner CM, Manner H. Dynamic stochastic copula models: estimation, inference and applications. J Appl Economet. 2012;27(2):269–95.

    Article  MathSciNet  Google Scholar 

  62. Schmidt T. Coping with Copulas in “Copulas: From Theory to Applications in Finance”. London: Risk Books. (2006).

  63. Jaworski P, et al. Copula theory and its applications, vol. 198. Berlin: Springer; 2010.

    Book  Google Scholar 

  64. Renard B, Lang M. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour. 2007;30(4):897–912.

    Article  Google Scholar 

  65. Frees EW, Valdez EA. Understanding relationships using copulas. N Am Actuar J. 1998;2(1):1–25.

    Article  MathSciNet  MATH  Google Scholar 

  66. Embrechts P. Copulas: a personal view. J Risk Insur. 2009;76(3):639–50.

    Article  Google Scholar 

  67. de la Peña VH, Ibragimov R, Sharakhmetov S. Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series. In: Optimality. Institute of Mathematical Statistics; 2006. p. 183–209.

    Chapter  Google Scholar 

  68. Jiryaie F, et al. Gaussian copula distributions for mixed data, with application in discrimination. J Stat Comput Simul. 2016;86(9):1643–59.

    Article  MathSciNet  MATH  Google Scholar 

  69. Favre AC, et al. Multivariate hydrological frequency analysis using copulas. Water Resour Res. 2004;40(W01101):1-12.

  70. Wilks DS. Multivariate ensemble model output statistics using empirical copulas. Q J R Meteorol Soc. 2015;141(688):945–52.

    Article  Google Scholar 

  71. Wang F, Li H. The role of copulas in random fields: characterization and application. Struct Saf. 2018;75:75–88.

    Article  Google Scholar 

  72. Inouye DI, et al. A review of multivariate distributions for count data derived from the Poisson distribution. Wiley Interdiscipl Rev Comput Stat. 2017;9(3): e1398.

    Article  MathSciNet  Google Scholar 

  73. Mair P, Satorra A, Bentler PM. Generating nonnormal multivariate data using copulas: applications to SEM. Multivar Behav Res. 2012;47(4):547–65.

    Article  Google Scholar 

  74. Durante F, Sánchez JF, Sempi C. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insur Math Econ. 2013;53(3):897–905.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by NSF grants 1916425, 1734853, 1636840, 1416953, 0716055 and 1023115, NIH grants P20 NR015331, UL1 TR002240, R01 CA233487, R01 MH121079, R01 MH126137, T32 GM141746. The funders played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Colleagues at the University of Michigan Statistics Online Computational Resource (SOCR) and the Michigan Institute for Data Science (MIDAS) contributed ideas, infrastructure, and support for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo D. Dinov.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, M., Chai, J.T. & Dinov, I.D. Interactive Visualization and Computation of 2D and 3D Probability Distributions. SN COMPUT. SCI. 3, 327 (2022). https://doi.org/10.1007/s42979-022-01206-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01206-w

Keywords

Navigation