Rossiter J. Soft robotics: the route to true robotic organisms. Artif Life Robot. 2021;1–6.
Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the Genetic and Evolutionary Computation Conference. 2013;167–74.
Zappetti D, Mintchev S, Shintake J, Floreano D. Bio-inspired tensegrity soft modular robots. In: Proceedings of the Conference on Biomimetic and Biohybrid Systems. 2017. p. 497–508. Springer
Lee C, Kim M, Kim YJ, Hong N, Ryu S, Kim HJ, Kim S. Soft robot review. Int J Control Automat Syst. 2017;15(1):3–15.
Article
Google Scholar
Shah D, Yang B, Kriegman S, Levin M, Bongard J, Kramer-Bottiglio R. Shape changing robots: bioinspiration, simulation, and physical realization. Adv Mater. 2020;1:2002882.
Article
Google Scholar
Howison T, Hauser S, Hughes J, Iida F. Reality-assisted evolution of soft robots through large-scale physical experimentation: a review, 2020. arXiv preprint arXiv:2009.13960.
Mintchev S, Zappetti D, Willemin J, Floreano D. A soft robot for random exploration of terrestrial environments. In: Proceedings of the International Conference on Robotics and Automation. 2018. p. 7492–7497. IEEE
Cheney N, Bongard J, Lipson H. Evolving soft robots in tight spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2015. p. 935–942
Hallawa A, Iacca G, Sariman C, Rahman T, Cochez M, Ascheid G. Morphological evolution for pipe inspection using robot operating system (ROS). Mater Manufact Process. 2020;35(6):714–24.
Article
Google Scholar
Song YS, Sun Y, Van Den Brand R, Von Zitzewitz J, Micera S, Courtine G, Paik J. Soft robot for gait rehabilitation of spinalized rodents. In: Proceedings of the International Conference on Intelligent Robots and Systems. 2013. p. 971–976. IEEE
Zhang B, Fan Y, Yang P, Cao T, Liao H. Worm-like soft robot for complicated tubular environments. Soft Robot. 2019;6(3):399–413.
Article
Google Scholar
Hiller J, Lipson H. Automatic design and manufacture of soft robots. IEEE Trans Robot. 2011;28(2):457–66.
Article
Google Scholar
Lee H, Jang Y, Choe JK, Lee S, Song H, Lee JP, Lone N, Kim J. 3D-printed programmable tensegrity for soft robotics. Sci Robot 2020;5(45).
Eiben AE, Hart E, Timmis J, Tyrrell AM, Winfield AF. Towards autonomous robot evolution. In: Software Engineering for Robotics. 2021. p. 29–51. Springer
Kriegman S, Cheney N, Bongard J. How morphological development can guide evolution. Sci Rep. 2018;8(1):1–10.
Google Scholar
Medvet E, Bartoli A, De Lorenzo A, Fidel G. Evolution of distributed neural controllers for voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2020. p. 112–120
Zardini E, Zappetti D, Zambrano D, Iacca G, Floreano D. Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2021, p. 189–197
Medvet E, Bartoli A, Pigozzi F, Rochelli M. Biodiversity in evolved voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2021. p. 129–137
Sims K. Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, 1994. p. 15–22
Balakrishnan K, Honavar V. On sensor evolution in robotics. In: Proceedings of the First International Conference on Genetic Programming. 1996. p. 455–460. Citeseer
Mautner C, Belew RK. Evolving robot morphology and control. Artific Life Robot. 2000;4(3):130–6.
Article
Google Scholar
Powers J, Grindle R, Kriegman S, Frati L, Cheney N, Bongard J. Morphology dictates learnability in neural controllers. In: Proceedings of the Artificial Life Conference. 2020. p. 52–59. MIT Press
Ferigo A, Iacca G, Medvet E. Beyond body shape and brain: evolving the sensory apparatus of voxel-based soft robots. In: Applications of Evolutionary Computation, vol 12694. 2021; p. 210–226. Springer, Cham
Hiller J, Lipson H. Dynamic simulation of soft multimaterial 3D-printed Objects. Soft Robot. 2014;1(1):88–101.
Article
Google Scholar
Medvet E, Bartoli A, De Lorenzo A, Seriani S. 2D-VSR-Sim: a simulation tool for the optimization of 2-D voxel-based soft robots. SoftwareX. 2020;12:100573.
Article
Google Scholar
Talamini J, Medvet E, Bartoli A, De Lorenzo A. Evolutionary synthesis of sensing controllers for voxel-based soft robots. In: Proceedings of the Artificial Life Conference, 2019. p. 574–581. MIT Press
Nadizar G, Medvet E, Pellegrino FA, Zullich M, Nichele S. On the effects of pruning on evolved neural controllers for soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, p. 1744–1752
Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolut Comput. 2001;9(2):159–95.
Article
Google Scholar
Medvet E, Bartoli A. Evolutionary optimization of graphs with graphea. In: Proceedings of International Conference of the Italian Association for Artificial Intelligence, 2020; p. 83–98. Springer
Rothlauf F, Goldberg DE. Redundant representations in evolutionary computation. Evolut Comput. 2003;11(4):381–415.
Article
Google Scholar
Demiris Y, Dearden A. From motor babbling to hierarchical learning by imitation: a robot developmental pathway. In: Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, vol 123., Lund University Cognitive Studies, 2005; p. 31–37
Saegusa R, Metta G, Sandini G, Sakka S. Active motor babbling for sensorimotor learning. In: Proceedings of the International Conference on Robotics and Biomimetics, 2009; p. 794–799. IEEE
Hansen N. The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation, 2006; p. 75–102. Springer
Auerbach JE, Iacca G, Floreano D. Gaining insight into quality diversity. In: Proceedings of the Genetic and Evolutionary Computation Conference – Companion, 2016; p. 1061–1064
Nordmoen J, Veenstra F, Ellefsen KO, Glette K. Quality and diversity in evolutionary modular robotics. 2020. arXiv preprint arXiv:2008.02116