Skip to main content

Optimizing the Sensory Apparatus of Voxel-Based Soft Robots Through Evolution and Babbling

Abstract

The behavior of biological and artificial agents strongly depends, in general, on the data acquired through sensors while interacting with the environment. The sensory apparatus, namely the location and kind of sensors, has therefore a great impact on an agent’s ability of exhibiting complex behaviors. Considering the case of robots, sensors are usually a design choice that is hard to take, due to the complexity of the robotic structure and a potentially large number of possible combinations. Here, we explore the possibility of using evolutionary algorithms to automatically design (and optimizing their use) the sensors of voxel-based soft robots (VSRs), a kind of robots composed of multiple deformable components. We chose these robots due to their intrinsic modularity, which allows to freely shape the robot body, brain, and sensory apparatus. We consider a set of sensors that allow agents to sense themselves and their environment and we show, experimentally, that the effectiveness of the sensory apparatus depends on the body shape and the actuation capability. Then, we show that evolutionary optimization is able to evolve effective sensory apparatuses, even with constraints on the availability of sensors. We also consider how information from sensors can be exploited more efficiently by introducing the concept of “sensor babbling”, which aims to enhance the robots’ perception and, hence, their performances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Rossiter J. Soft robotics: the route to true robotic organisms. Artif Life Robot. 2021;1–6.

  2. Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the Genetic and Evolutionary Computation Conference. 2013;167–74.

  3. Zappetti D, Mintchev S, Shintake J, Floreano D. Bio-inspired tensegrity soft modular robots. In: Proceedings of the Conference on Biomimetic and Biohybrid Systems. 2017. p. 497–508. Springer

  4. Lee C, Kim M, Kim YJ, Hong N, Ryu S, Kim HJ, Kim S. Soft robot review. Int J Control Automat Syst. 2017;15(1):3–15.

    Article  Google Scholar 

  5. Shah D, Yang B, Kriegman S, Levin M, Bongard J, Kramer-Bottiglio R. Shape changing robots: bioinspiration, simulation, and physical realization. Adv Mater. 2020;1:2002882.

    Article  Google Scholar 

  6. Howison T, Hauser S, Hughes J, Iida F. Reality-assisted evolution of soft robots through large-scale physical experimentation: a review, 2020. arXiv preprint arXiv:2009.13960.

  7. Mintchev S, Zappetti D, Willemin J, Floreano D. A soft robot for random exploration of terrestrial environments. In: Proceedings of the International Conference on Robotics and Automation. 2018. p. 7492–7497. IEEE

  8. Cheney N, Bongard J, Lipson H. Evolving soft robots in tight spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2015. p. 935–942

  9. Hallawa A, Iacca G, Sariman C, Rahman T, Cochez M, Ascheid G. Morphological evolution for pipe inspection using robot operating system (ROS). Mater Manufact Process. 2020;35(6):714–24.

    Article  Google Scholar 

  10. Song YS, Sun Y, Van Den Brand R, Von Zitzewitz J, Micera S, Courtine G, Paik J. Soft robot for gait rehabilitation of spinalized rodents. In: Proceedings of the International Conference on Intelligent Robots and Systems. 2013. p. 971–976. IEEE

  11. Zhang B, Fan Y, Yang P, Cao T, Liao H. Worm-like soft robot for complicated tubular environments. Soft Robot. 2019;6(3):399–413.

    Article  Google Scholar 

  12. Hiller J, Lipson H. Automatic design and manufacture of soft robots. IEEE Trans Robot. 2011;28(2):457–66.

    Article  Google Scholar 

  13. Lee H, Jang Y, Choe JK, Lee S, Song H, Lee JP, Lone N, Kim J. 3D-printed programmable tensegrity for soft robotics. Sci Robot 2020;5(45).

  14. Eiben AE, Hart E, Timmis J, Tyrrell AM, Winfield AF. Towards autonomous robot evolution. In: Software Engineering for Robotics. 2021. p. 29–51. Springer

  15. Kriegman S, Cheney N, Bongard J. How morphological development can guide evolution. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  16. Medvet E, Bartoli A, De Lorenzo A, Fidel G. Evolution of distributed neural controllers for voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2020. p. 112–120

  17. Zardini E, Zappetti D, Zambrano D, Iacca G, Floreano D. Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2021, p. 189–197

  18. Medvet E, Bartoli A, Pigozzi F, Rochelli M. Biodiversity in evolved voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2021. p. 129–137

  19. Sims K. Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, 1994. p. 15–22

  20. Balakrishnan K, Honavar V. On sensor evolution in robotics. In: Proceedings of the First International Conference on Genetic Programming. 1996. p. 455–460. Citeseer

  21. Mautner C, Belew RK. Evolving robot morphology and control. Artific Life Robot. 2000;4(3):130–6.

    Article  Google Scholar 

  22. Powers J, Grindle R, Kriegman S, Frati L, Cheney N, Bongard J. Morphology dictates learnability in neural controllers. In: Proceedings of the Artificial Life Conference. 2020. p. 52–59. MIT Press

  23. Ferigo A, Iacca G, Medvet E. Beyond body shape and brain: evolving the sensory apparatus of voxel-based soft robots. In: Applications of Evolutionary Computation, vol 12694. 2021; p. 210–226. Springer, Cham

  24. Hiller J, Lipson H. Dynamic simulation of soft multimaterial 3D-printed Objects. Soft Robot. 2014;1(1):88–101.

    Article  Google Scholar 

  25. Medvet E, Bartoli A, De Lorenzo A, Seriani S. 2D-VSR-Sim: a simulation tool for the optimization of 2-D voxel-based soft robots. SoftwareX. 2020;12:100573.

    Article  Google Scholar 

  26. Talamini J, Medvet E, Bartoli A, De Lorenzo A. Evolutionary synthesis of sensing controllers for voxel-based soft robots. In: Proceedings of the Artificial Life Conference, 2019. p. 574–581. MIT Press

  27. Nadizar G, Medvet E, Pellegrino FA, Zullich M, Nichele S. On the effects of pruning on evolved neural controllers for soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, p. 1744–1752

  28. Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolut Comput. 2001;9(2):159–95.

    Article  Google Scholar 

  29. Medvet E, Bartoli A. Evolutionary optimization of graphs with graphea. In: Proceedings of International Conference of the Italian Association for Artificial Intelligence, 2020; p. 83–98. Springer

  30. Rothlauf F, Goldberg DE. Redundant representations in evolutionary computation. Evolut Comput. 2003;11(4):381–415.

    Article  Google Scholar 

  31. Demiris Y, Dearden A. From motor babbling to hierarchical learning by imitation: a robot developmental pathway. In: Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, vol 123., Lund University Cognitive Studies, 2005; p. 31–37

  32. Saegusa R, Metta G, Sandini G, Sakka S. Active motor babbling for sensorimotor learning. In: Proceedings of the International Conference on Robotics and Biomimetics, 2009; p. 794–799. IEEE

  33. Hansen N. The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation, 2006; p. 75–102. Springer

  34. Auerbach JE, Iacca G, Floreano D. Gaining insight into quality diversity. In: Proceedings of the Genetic and Evolutionary Computation Conference – Companion, 2016; p. 1061–1064

  35. Nordmoen J, Veenstra F, Ellefsen KO, Glette K. Quality and diversity in evolutionary modular robotics. 2020. arXiv preprint arXiv:2008.02116

Download references

Acknowledgements

We thank Luca Zanella for the CMA-ES and vision sensor implementation. We gratefully acknowledge HPC-Cineca for making computing resources available.

Author information

Authors and Affiliations

Authors

Contributions

AF: investigation; software; data curation; visualization; writing—original draft. EM: conceptualization; methodology; software; visualization; writing—review and editing. GI: conceptualization; methodology; writing—review and editing.

Corresponding author

Correspondence to Giovanni Iacca.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code availability

The framework used in this work is divided into three parts: The evolver, available at: https://github.com/ericmedvet/jgea; The simulator, available at: https://github.com/ericmedvet/2dhmsr; A minimal framework used to combine the two previous components, available at: https://github.com/ndr09/HSMRcoevo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Applications of bioinspired computing (to real world problems)” guest edited by Aniko Ekart, Pedro Castillo, and Juanlu Jiménez-Laredo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferigo, A., Medvet, E. & Iacca, G. Optimizing the Sensory Apparatus of Voxel-Based Soft Robots Through Evolution and Babbling. SN COMPUT. SCI. 3, 109 (2022). https://doi.org/10.1007/s42979-021-00987-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00987-w

Keywords

  • Adaptation
  • Morphological evolution
  • Embodied cognition
  • CMA-ES