Skip to main content
Log in

A Review of Machine Learning Classification Using Quantum Annealing for Real-World Applications

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-wave systems and is available to the research community for experiments. Recent experimental results on a variety of machine learning applications using quantum annealing have shown interesting results where the performance of classical machine learning techniques is limited by limited training data and high dimensional features. This article explores the application of D-wave’s quantum annealer for optimizing machine learning pipelines for real-world classification problems. We review the application domains on which a physical quantum annealer has been used to train machine learning classifiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and the problems for which quantum annealing is likely to be advantageous over classical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adachi SH, Henderson MP. Application of quantum annealing to training of deep neural networks. 2015. arXiv:1510.06356.

  2. Ajagekar A, Humble T, You F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Comput Chem Eng. 2020;132:106630.

    Article  Google Scholar 

  3. Alexeev Y, Bacon D, Brown KR, Calderbank R, Carr LD, Chong FT, DeMarco B, Englund D, Farhi E, Fefferman B, et al. Quantum computer systems for scientific discovery. PRX Quantum. 2021;2(1):017001.

    Article  Google Scholar 

  4. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549(7671):195–202.

    Article  Google Scholar 

  5. Boothby T, King AD, Roy A. Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf Process. 2016;15(1):495–508.

    Article  MathSciNet  Google Scholar 

  6. Boyda E, Basu S, Ganguly S, Michaelis A, Mukhopadhyay S, Nemani RR. Deploying a quantum annealing processor to detect tree cover in aerial imagery of California. PLoS One. 2017;12(2):e0172505.

    Article  Google Scholar 

  7. Caldeira J, Job J, Adachi SH, Nord B, Perdue GN. Restricted Boltzmann machines for galaxy morphology classification with a quantum annealer. 2019. arXiv:1911.06259.

  8. Creus Botella G. Exploring machine learning advances in finance. B.S. thesis, Universitat Politècnica de Catalunya 2021

  9. D-Wave previews next-generation quantum computing platform. 2019. https://www.dwavesys.com/press-releases/d-wave-previews-next-generation-quantum-computing-platform.

  10. Dema B, Arai J, Horikawa K. Support vector machine for multiclass classification using quantum annealers. 2020.

  11. Denchev VS, Ding N, Vishwanathan S, Neven H. Robust classification with adiabatic quantum optimization. 2012. arXiv:1205.1148.

  12. Dixit V, Selvarajan R, Alam MA, Humble TS, Kais S. Training a quantum annealing based restricted boltzmann machine on cybersecurity data. 2020. arXiv:2011.13996.

  13. Dixit V, Selvarajan R, Alam MA, Humble TS, Kais S. Training and classification using a restricted Boltzmann machine on the d-wave 2000q. 2020. arXiv:2005.03247.

  14. Dulny III J, Kim M. Developing quantum annealer driven data discovery. 2016. arXiv:1603.07980.

  15. Francia GA, El-Sheikh E. Applied machine learning to vehicle security. In: Machine intelligence and big data analytics for cybersecurity applications. Springer; 2021. p. 423–42.

  16. Gao H, Li Y, Zhang Z, Zhao W. Machine learning used in biomedical computing and intelligence healthcare, volume I. Front Genet. 2021;12.

  17. Garg S, Ramakrishnan G. Advances in quantum deep learning: an overview. 2020. arXiv preprint arXiv:2005.04316.

  18. Goodrich TD, Sullivan BD, Humble TS. Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Inf Process. 2018;17(5):1–26.

    Article  MathSciNet  Google Scholar 

  19. Grant EK, Humble TS. Adiabatic quantum computing and quantum annealing. In: Oxford research encyclopedia of physics. 2020.

  20. Hilbert M, López P. The world’s technological capacity to store, communicate, and compute information. Science. 2011;332(6025):60–5.

    Article  Google Scholar 

  21. Humble TS, Thapliyal H, Munoz-Coreas E, Mohiyaddin FA, Bennink RS. Quantum computing circuits and devices. IEEE Des Test. 2019;36(3):69–94.

    Article  Google Scholar 

  22. Jin C, Netrapalli P, Ge R, Kakade SM, Jordan MI. On nonconvex optimization for machine learning: gradients, stochasticity, and saddle points. J ACM (JACM). 2021;68(2):1–29.

    Article  MathSciNet  Google Scholar 

  23. Johnson MW. Next generation quantum annealing system. 2019. https://www.dwavesys.com/sites/default/files/13DWJohnson.pdf.

  24. Klymko C, Sullivan BD, Humble TS. Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf Process. 2014;13(3):709–29.

    Article  MathSciNet  Google Scholar 

  25. Larochelle H, Bengio Y. Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th international conference on machine learning. 2008. p. 536–43.

  26. LeCun Y. The mnist database of handwritten digits. 1998. http://yann.lecun.com/exdb/mnist/.

  27. Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14–22.

    Article  Google Scholar 

  28. Li RY, Di Felice R, Rohs R, Lidar DA. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 2018;4(1):1–10.

    Article  Google Scholar 

  29. Liu J, Spedalieri FM, Yao KT, Potok TE, Schuman C, Young S, Patton R, Rose GS, Chamka G. Adiabatic quantum computation applied to deep learning networks. Entropy. 2018;20(5):380.

    Article  MathSciNet  Google Scholar 

  30. McGeoch CC. Adiabatic quantum computation and quantum annealing: theory and practice. Synth Lect Quantum Comput. 2014;5(2):1–93.

    Article  Google Scholar 

  31. Morita S, Nishimori H. Mathematical foundation of quantum annealing. J Math Phys. 2008;49(12):125210.

    Article  MathSciNet  Google Scholar 

  32. Mott A, Job J, Vlimant JR, Lidar D, Spiropulu M. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature. 2017;550(7676):375–9.

    Article  Google Scholar 

  33. Mukherjee S, Chakrabarti BK. Multivariable optimization: quantum annealing and computation. Eur Phys J Spec Top. 2015;224(1):17–24.

    Article  Google Scholar 

  34. Neven H, Denchev VS, Drew-Brook M, Zhang J, Macready WG, Rose G. Nips 2009 demonstration: binary classification using hardware implementation of quantum annealing. Quantum. 2009. p. 1–17.

  35. Nguyen NT, Kenyon GT. Image classification using quantum inference on the D-wave 2x. In: 2018 IEEE international conference on rebooting computing (ICRC). IEEE. 2018. p. 1–7.

  36. Pudenz KL, Lidar DA. Quantum adiabatic machine learning. Quantum Inf Process. 2013;12(5):2027–70.

    Article  MathSciNet  Google Scholar 

  37. Rahul K, Banyal RK, Goswami P, Kumar V. Machine learning algorithms for big data analytics. In: Computational methods and data engineering. Springer; 2021. p. 359–67.

  38. Ray P, Chakrabarti BK, Chakrabarti A. Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys Rev B. 1989;39(16):11828.

    Article  Google Scholar 

  39. Terwilliger AM, Perdue GN, Isele D, Patton RM, Young SR. Vertex reconstruction of neutrino interactions using deep learning. In: 2017 international joint conference on neural networks (IJCNN). IEEE. 2017. p. 2275–81.

  40. The D-Wave \(2000\text{q}^{\rm{TM}}\) quantum computer technology overview. 2019. https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral0117F.pdf.

  41. Ward A, Bambos N. Quantum annealing assisted deep learning for lung cancer detection. 2017

  42. Willsch D, Willsch M, De Raedt H, Michielsen K. Support vector machines on the d-wave quantum annealer. Comput Phys Commun. 2020;248:107006.

    Article  MathSciNet  Google Scholar 

  43. Wittek P. Quantum machine learning: what quantum computing means to data mining. Cambridge: Academic Press; 2014.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Thapliyal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Hardware for AI, Machine Learning and Emerging Electronic Systems” guest edited by Himanshu Thapliyal, Saraju Mohanty and VS Kanchana Bhaaskaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, R.K., Thapliyal, H. & Humble, T.S. A Review of Machine Learning Classification Using Quantum Annealing for Real-World Applications. SN COMPUT. SCI. 2, 365 (2021). https://doi.org/10.1007/s42979-021-00751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00751-0

Keywords

Navigation