Karakanta A, Dehdari J, van Genabith J. Neural machine translation for low-resource languages without parallel corpora. Machans. 2018;32(1):167–89. https://doi.org/10.1007/s10590-017-9203-5.
Article
Google Scholar
Lewis W, Munro R, Vogel S. Crisis MT: Developing a cookbook for MT in crisis situations. In: Proceedings of the sixth workshop on statistical machine translation. Association for computational linguistics, Edinburgh, Scotland; 2011. p. 501–511. https://www.aclweb.org/anthology/W11-2164.
Neubig G, Hu J. Rapid adaptation of neural machine translation to new languages. In: Proceedings of the 2018 conference on empirical methods in natural language processing. Association for computational linguistics, Brussels, Belgium; 2018;. p. 75–880. https://doi.org/10.18653/v1/D18-1103. https://www.aclweb.org/anthology/D18-1103
Abercrombie G. A rule-based shallow-transfer machine translation system for Scots and English. In: Proceedings of the tenth international conference on language resources and evaluation (LREC’16), European Language Resources Association (ELRA), Portorož, Slovenia, 2016. p. 578–584. https://www.aclweb.org/anthology/L16-1092
Allauzen C, Byrne B, Gispert A, Iglesias G, Riley M. Pushdown automata in statistical machine translation. Comput Linguistics. 2014;40(3):687–723. https://doi.org/10.1162/COLI_a_00197. https://www.aclweb.org/anthology/J14-3008
Centelles J, Costa-jussà MR. Chinese-to-Spanish rule-based machine translation system. In: Proceedings of the 3rd workshop on hybrid approaches to machine translation (HyTra), association for computational linguistics, Gothenburg, Sweden; 2014. p. 82–86. https://doi.org/10.3115/v1/W14-1015. https://www.aclweb.org/anthology/W14-1015
Charoenpornsawat P, Sornlertlamvanich V, Charoenporn T. Improving translation quality of rule-based machine translation. In: COLING-02: machine translation in Asia; 2002. https://www.aclweb.org/anthology/W02-1605
Hurskainen A, Tiedemann J. Rule-based machine translation from English to Finnish. In: Proceedings of the second conference on machine translation. Association for computational linguistics, Copenhagen, Denmark; 2017. p. 323–329. https://doi.org/10.18653/v1/W17-4731. https://www.aclweb.org/anthology/W17-4731
Kaji H. An efficient execution method for rule-based machine translation. In: Coling Budapest 1988 volume 2: international conference on computational linguistics; 1988. https://www.aclweb.org/anthology/C88-2167.
Susanto RH, Larasati SD, Tyers FM. Rule-based machine translation between Indonesian and Malaysian. In: Proceedings of the 3rd workshop on South and Southeast Asian natural language processing. The COLING 2012 Organizing Committee, Mumbai, India; 2012. p. 191–200. https://www.aclweb.org/anthology/W12-5017
Carl M. A model of competence for corpus-based machine translation. In: COLING 2000 volume 2: the 18th international conference on computational linguistics; 2000. https://www.aclweb.org/anthology/C00-2145
Dauphin E, Lux V. Corpus-based annotated test set for machine translation evaluation by an industrial user. In: COLING 1996 volume 2: the 16th international conference on computational linguistics; 1996. https://www.aclweb.org/anthology/C96-2188
Green S, Cer D, Manning C. An empirical comparison of features and tuning for phrase-based machine translation. In: Proceedings of the ninth workshop on statistical machine translation, association for computational linguistics, Baltimore, Maryland, USA; 2014. p. 466–476, https://doi.org/10.3115/v1/W14-3360. https://www.aclweb.org/anthology/W14-3360
Junczys-Dowmunt M, Grundkiewicz R. Phrase-based machine translation is state-of-the-art for automatic grammatical error correction. In: Proceedings of the 2016 conference on empirical methods in natural language processing. Association for computational linguistics, Austin, Texas; 2016. p. 1546–1556,.https://doi.org/10.18653/v1/D16-1161. https://www.aclweb.org/anthology/D16-1161
Koehn P. Europarl: a parallel corpus for statistical machine translation. In: Conference proceedings: the tenth machine translation summit, AAMT; 2005.
Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, et al. Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions. Association for computational linguistics; 2007. p. 177–180.
Kondrak G, Marcu D, Knight K. Cognates can improve statistical translation models. In: Companion volume of the proceedings of HLT-NAACL 2003—short papers; 2003. p. 46–48. https://www.aclweb.org/anthology/N03-2016
Setiawan H, Li H, Zhang M, Ooi BC. Phrase-based statistical machine translation: a level of detail approach. In: Dale R, Wong KF, Su J, Kwong OY, editors. Natural language processing-IJCNLP 2005. Berlin Heidelberg: Springer; 2005. p. 576–87.
Chapter
Google Scholar
Bahdanau D, Cho KH, Bengio Y. Neural machine translation by jointly learning to align and translate. In: 3rd international conference on learning representations, ICLR; 2015.
Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar; 2014. p. 1724–1734. https://doi.org/10.3115/v1/D14-1179. https://www.aclweb.org/anthology/D14-1179
Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proceedings of the 27th international conference on neural information processing systems - volume 2. MIT Press, Cambridge, MA, USA, NIPS’14; 2014. p. 3104–3112. http://dl.acm.org/citation.cfm?id=2969033.2969173
Zhang J, Wang M, Liu Q, Zhou J. Incorporating word reordering knowledge into attention-based neural machine translation. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers). Association for computational linguistics, Vancouver, Canada; 2017. p. 1524–1534. https://doi.org/10.18653/v1/P17-1140. https://www.aclweb.org/anthology/P17-1140
Kim Y, Petrov P, Petrushkov P, Khadivi S, Ney H. Pivot-based transfer learning for neural machine translation between non-English languages. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for computational linguistics, Hong Kong, China; 2019. p. 866–876. https://doi.org/10.18653/v1/D19-1080. https://www.aclweb.org/anthology/D19-1080
Wu H, Wang H. Pivot language approach for phrase-based statistical machine translation. In: Proceedings of the 45th annual meeting of the association of computational linguistics, Prague, Czech Republic; 2007. p. 856–863. https://www.aclweb.org/anthology/P07-1108
Wu H, Wang H. Revisiting pivot language approach for machine translation. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP. Association for computational linguistics, Suntec, Singapore; 2009. p. 154–162. https://www.aclweb.org/anthology/P09-1018
Currey A, Heafield K. Zero-resource neural machine translation with monolingual pivot data. In: Proceedings of the 3rd workshop on neural generation and translation, Association for computational linguistics, Hong Kong; 2019. p. 99–107. https://doi.org/10.18653/v1/D19-5610. https://www.aclweb.org/anthology/D19-5610
Gu J, Wang Y, Cho K, Li VO. Improved zero-shot neural machine translation via ignoring spurious correlations. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 1258–1268. https://doi.org/10.18653/v1/P19-1121. https://www.aclweb.org/anthology/P19-1121
Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, Thorat N, Viégas F, Wattenberg M, Corrado G, Hughes M, Dean J. Google’s multilingual neural machine translation system: enabling zero-shot translation. Trans Assoc Comput Linguistics. 2017;5:339–51. https://doi.org/10.1162/tacl_a_00065. https://www.aclweb.org/anthology/Q17-1024
Pham NQ, Niehues J, Ha TL, Waibel A. Improving zero-shot translation with language-independent constraints. In: Proceedings of the fourth conference on machine translation (volume 1: research papers). Association for computational linguistics, Florence, Italy; 2019. p. 13–23. https://doi.org/10.18653/v1/W19-5202. https://www.aclweb.org/anthology/W19-5202
Tan X, Chen J, He D, Xia Y, Qin T, Liu TY. Multilingual neural machine translation with language clustering. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China; 2019. p. 963–973. https://doi.org/10.18653/v1/D19-1089. https://www.aclweb.org/anthology/D19-1089.
Artetxe M, Labaka G, Agirre E. Bilingual lexicon induction through unsupervised machine translation. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 5002–5007. https://doi.org/10.18653/v1/P19-1494. https://www.aclweb.org/anthology/P19-1494
Artetxe M, Labaka G, Agirre E. An effective approach to unsupervised machine translation. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 194–203. https://doi.org/10.18653/v1/P19-1019. https://www.aclweb.org/anthology/P19-1019
Pourdamghani N, Aldarrab N, Ghazvininejad M, Knight K, May J. Translating translationese: a two-step approach to unsupervised machine translation. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 3057–3062, https://doi.org/10.18653/v1/P19-1293. https://www.aclweb.org/anthology/P19-1293
Abney S, Bird S. The Human Language Project: building a universal corpus of the world’s languages. In: Proceedings of the 48th annual meeting of the association for computational linguistics; 2010. p. 88–97. http://www.aclweb.org/anthology/P10-1010
Hauksdóttir A. An innovative world language centre : challenges for the use of language technology. In: Proceedings of the ninth international conference on language resources and evaluation (LREC-2014). European Language Resources Association (ELRA); 2014. http://www.aclweb.org/anthology/L14-1618
Alegria I, Artola X, De Ilarraza AD, Sarasola K. Strategies to develop language technologies for less-resourced languages based on the case of Basque; 2011.
Krauwer S. The basic language resource kit (BLARK) as the first milestone for the language resources roadmap. Proc SPECOM. 2003;2003:8–15.
Google Scholar
Maxwell M, Hughes B. Frontiers in linguistic annotation for lower-density languages. In: Proceedings of the workshop on frontiers in linguistically annotated Corpora 2006. Association for computational linguistics; 2006. p. 29–37. http://www.aclweb.org/anthology/W06-0605
Jimerson R, Prud’hommeaux E (2018) ASR for documenting acutely under-resourced indigenous languages. In: Chair NCC, Choukri K, Cieri C, Declerck T, Goggi S, Hasida K, Isahara H, Maegaard B, Mariani J, Mazo H, Moreno A, Odijk J, Piperidis S, Tokunaga T, editors. Proceedings of the eleventh international conference on language resources and evaluation (LREC). European Language Resources Association (ELRA), Japan, Miyazaki; 2018.
Fromkin V, Rodman R, Hyams N. An introduction to language. Boston: Cengage Learning; 2018.
Google Scholar
Fischer A, Jágrová K, Stenger I, Avgustinova T, Klakow D, Marti R. Orthographic and morphological correspondences between related slavic languages as a base for modeling of mutual intelligibility. In: Proceedings of the tenth international conference on language resources and evaluation (LREC’16); 2016. p. 4202–4209.
Min Z, Haizhou L, Jian S. Direct orthographical mapping for machine transliteration. In: Proceedings of the 20th international conference on computational linguistics. Association for computational linguistics; 2004. p. 716.
Kunchukuttan A, Khapra M, Singh G, Bhattacharyya P. Leveraging orthographic similarity for multilingual neural transliteration. Trans Assoc Comput Linguistics 2018;6:303–16. https://doi.org/10.1162/tacl_a_00022. https://www.aclweb.org/anthology/Q18-1022
Farrús M, Costa-Jussa MR, Marino JB, Poch M, Hernández A, Henríquez C, Fonollosa JA. Overcoming statistical machine translation limitations: error analysis and proposed solutions for the catalan-spanish language pair. Language Resour Eval. 2011;45(2):181–208.
Article
Google Scholar
Lita LV, Ittycheriah A, Roukos S, Kambhatla N. Truecasing. In: Proceedings of the 41st annual meeting on association for computational linguistics-volume 1. Association for computational linguistics; 2003. p. 152–159.
Schlippe T, Zhu C, Gebhardt J, Schultz T. Text normalization based on statistical machine translation and internet user support. In: Eleventh annual conference of the international speech communication association; 2010.
Leusch G, Ueffing N, Vilar D, Ney H. Preprocessing and normalization for automatic evaluation of machine translation. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, Association for Computational Linguistics, Ann Arbor, Michigan; 2005. p. 17–24. https://www.aclweb.org/anthology/W05-0903
Guzmán F, Bouamor H, Baly R, Habash N. Machine translation evaluation for Arabic using morphologically-enriched embeddings. In: Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical papers. The COLING 2016 Organizing Committee, Osaka, Japan; 2016. p. 1398–1408. https://www.aclweb.org/anthology/C16-1132
Kumaran A, Kellner T. A generic framework for machine transliteration. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. ACM; 2007. p. 721–722.
Ayeomoni MO. Code-switching and code-mixing: Style of language use in childhood in Yoruba speech community. Nordic J Afr Stud. 2006;15(1):90–9.
Google Scholar
Parshad RD, Bhowmick S, Chand V, Kumari N, Sinha N. What is India speaking? Exploring the “Hinglish” invasion. Phys A Stat Mech Appl. 2016;449:375–89. https://doi.org/10.1016/j.physa.2016.01.015. http://www.sciencedirect.com/science/article/pii/S0378437116000236
Ranjan P, Raja B, Priyadharshini R, Balabantaray RC. A comparative study on code-mixed data of Indian social media vs formal text. In: 2nd international conference on contemporary computing and informatics (IC3I), IEEE; 2016. p. 608–611. https://ieeexplore.ieee.org/document/7918035
Yoder MM, Rijhwani S, Rosé CP, Levin L. Code-switching as a social act: the case of Arabic Wikipedia talk pages. ACL. 2017;2017:73.
Google Scholar
Chanda A, Das D, Mazumdar C. Columbia-Jadavpur submission for emnlp 2016 code-switching workshop shared task: system description. EMNLP. 2016;2016:112.
Google Scholar
Chan JYC, Cao H, Ching PC, Lee T. Automatic recognition of Cantonese-English code-mixing speech. Int J Comput Linguistics Chin Language Process. 2009;14(3). https://www.aclweb.org/anthology/O09-5003
Lagarda AL, Alabau V, Casacuberta F, Silva R, Díaz-de Liaño E. Statistical post-editing of a rule-based machine translation system. In: Proceedings of human language technologies: the 2009 annual conference of the North American Chapter of the Association for Computational Linguistics, companion volume: short papers. Association for Computational Linguistics, Stroudsburg, PA, USA, NAACL-Short ’09; 2009. p. 217–220. http://dl.acm.org/citation.cfm?id=1620853.1620913
Slocum J, Bennett WS, Whiffin L, Norcross E. An evaluation of metal: the lrc machine translation system. In: Proceedings of the second conference on European chapter of the association for computational linguistics; 1985. p. 62–69.
Armentano-Oller C, Carrasco RC, Corbí-Bellot AM, Forcada ML, Ginestí-Rosell M, Ortiz-Rojas S, Pérez-Ortiz JA, Ramírez-Sánchez G, Sánchez-Martínez F, Scalco MA. Open-source portuguese-spanish machine translation. In: Mamede NJ, Oliveira C, Dias MC, Vieira R, Quaresma P, Nunes MGV, editors. Computational processing of the Portuguese language. Berlin, Heidelberg: Springer; 2006. p. 50–9.
Chapter
Google Scholar
Forcada ML, Ginestí-Rosell M, Nordfalk J, O’Regan J, Ortiz-Rojas S, Pérez-Ortiz JA, Sánchez-Martínez F, Ramírez-Sánchez G, Tyers FM. Apertium: a free/open-source platform for rule-based machine translation. Mach Transl. 2011;25(2):127–44.
Article
Google Scholar
Garrido-Alenda A, Gilabert-Zarco P, Pérez-Ortiz JA, Pertusa-Ibáñez A, Ramírez-Sánchez G, Sánchez-Martínez F, Scalco MA, Forcada ML. Shallow parsing for portuguese–spanish machine translation. In: Tagging and shallow processing of Portuguese: workshop notes of TASHA’2003, Citeseer; 2003. p. 21.
Xu Q, Chen A, Li C. Detecting English-French cognates using orthographic edit distance. In: Proceedings of the Australasian Language Technology Association Workshop 2015, Parramatta, Australia, 2015. p. 145–149. https://www.aclweb.org/anthology/U15-1020.
Scannell KP. Machine translation for closely related language pairs. In: Proceedings of the workshop strategies for developing machine translation for minority languages, Citeseer; 2006. p. 103–109.
Ruth J, O’Regan J. Shallow-transfer rule-based machine translation for Czech to Polish. In: Proceedings of the second international workshop on free/open-source rule-based machine translation, Universitat Oberta de Catalunya; 2011. p. 69–76.
Tyers FM, Nordfalk J, et al. Shallow-transfer rule-based machine translation for swedish to danish. In: Proceedings of the first international workshop on free/open-source rule-based machine translation. Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos; 2009. p. 27–33.
Tantuğ AC, Adalı E. Machine translation between Turkic languages. In: Saraçlar M, Oflazer K. editors. Turkish natural language processing. Springer; 2018. p. 237–254.
Tantuğ AC, Adalı E, Oflazer K.A MT system from Turkmen to Turkish employing finite state and statistical methods. In: Machine translation summit XI, European Association for Machine Translation (EAMT); 2007. p. 459–465.
Brown PF, Della Pietra SA, Della Pietra VJ, Mercer RL. The mathematics of statistical machine translation: Parameter estimation. Comput Linguistics 1993;19(2):263–311. https://www.aclweb.org/anthology/J93-2003
Koehn P. Statistical machine translation. 1st ed. New York, NY: Cambridge University Press; 2010.
MATH
Google Scholar
Waite A, Byrne B. The geometry of statistical machine translation. In: Proceedings of the 2015 conference of the North American Chapter of the Association for Computational Linguistics: human language technologies. Association for computational linguistics, Denver, Colorado; 2015. p. 376–386. https://doi.org/10.3115/v1/N15-1041. https://www.aclweb.org/anthology/N15-1041
Wang YY, Waibel A. Decoding algorithm in statistical machine translation. In: 35th annual meeting of the association for computational linguistics and 8th conference of the European Chapter of the Association for Computational Linguistics. Association for computational linguistics, Madrid, Spain; 1997. p. 366–372. https://doi.org/10.3115/976909.979664. https://www.aclweb.org/anthology/P97-1047
El Kholy A, Habash N. Orthographic and morphological processing for english–arabic statistical machine translation. Mach Trans. 2012;26(1–2):25–45. https://doi.org/10.1007/s10590-011-9110-0.
Article
Google Scholar
Costa-Jussa MR, Farrús M, Marino JB, Fonollosa JA. Study and comparison of rule-based and statistical catalan-spanish machine translation systems. Comput Inf. 2012;31(2):245–70.
Google Scholar
Bertoldi N, Zens R, Federico M, Shen W. Efficient speech translation through confusion network decoding. IEEE Trans Audio Speech Language Process. 2008;16(8):1696–705. https://doi.org/10.1109/TASL.2008.2002054.
Article
Google Scholar
Bertoldi N, Cettolo M, Federico M. Statistical machine translation of texts with misspelled words. In: Human language technologies: the 2010 annual conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, California; 2010. p. 412–419. https://www.aclweb.org/anthology/N10-1064
Formiga L, Fonollosa JAR. Dealing with input noise in statistical machine translation. In: Proceedings of COLING 2012: posters, the COLING 2012 organizing committee, Mumbai, India; 2012. p. 319–328. https://www.aclweb.org/anthology/C12-2032
Brill E, Moore RC. An improved error model for noisy channel spelling correction. In: Proceedings of the 38th annual meeting of the association for computational linguistics, Hong Kong; 2000. p. 286–293. https://doi.org/10.3115/1075218.1075255. https://www.aclweb.org/anthology/P00-1037
Toutanova K, Moore R. Pronunciation modeling for improved spelling correction. In: Proceedings of the 40th annual meeting of the association for computational linguistics. Association for computational linguistics, Philadelphia, Pennsylvania, USA; 2002. p. 144–151. https://doi.org/10.3115/1073083.1073109. https://www.aclweb.org/anthology/P02-1019
Nakov P. Improving English-Spanish statistical machine translation: experiments in domain adaptation, sentence paraphrasing, tokenization, and recasing. In: Proceedings of the third workshop on statistical machine translation. Association for computational linguistics, Columbus, Ohio; 2008. p. 147–150. https://www.aclweb.org/anthology/W08-0320
Oudah M, Almahairi A, Habash N. The impact of preprocessing on Arabic-English statistical and neural machine translation. In: Proceedings of machine translation summit XVII volume 1: research track. European Association for Machine Translation, Dublin, Ireland; 2019. p. 214–221. https://www.aclweb.org/anthology/W19-6621
Sennrich R, Haddow B, Birch A. Improving neural machine translation models with monolingual data. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers). Association for computational linguistics, Berlin, Germany; 2016. p. 86–96. https://doi.org/10.18653/v1/P16-1009. https://www.aclweb.org/anthology/P16-1009
Chen Y, Avgustinova T. Machine translation from an intercomprehension perspective. In: Proceedings of the fourth conference on machine translation (volume 3: shared task papers, day 2). Association for computational linguistics, Florence, Italy; 2019. p. 192–196. https://doi.org/10.18653/v1/W19-5425. https://www.aclweb.org/anthology/W19-5425
Scannell K. Statistical models for text normalization and machine translation. In: Proceedings of the first Celtic language technology workshop. Association for computational linguistics and Dublin City University, Dublin, Ireland; 2014. p. 33–40. https://doi.org/10.3115/v1/W14-4605. https://www.aclweb.org/anthology/W14-4605
Schneider G, Pettersson E, Percillier M. Comparing rule-based and SMT-based spelling normalisation for English historical texts. In: Proceedings of the NoDaLiDa 2017 workshop on processing historical language, Linköping University Electronic Press, Gothenburg; 2017. p. 40–46. https://www.aclweb.org/anthology/W17-0508
Hämäläinen M, Säily T, Rueter J, Tiedemann J, Mäkelä E. Normalizing early English letters to present-day English spelling. In: Proceedings of the second joint SIGHUM workshop on computational linguistics for cultural heritage, social sciences, humanities and literature. Association for computational linguistics, Santa Fe, New Mexico; 2018. p. 87–96. https://www.aclweb.org/anthology/W18-4510
Honnet PE, Popescu-Belis A, Musat C, Baeriswyl M. Machine translation of low-resource spoken dialects: strategies for normalizing swiss German. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan; 2018. https://www.aclweb.org/anthology/L18-1597
Napoles C, Callison-Burch C. Systematically adapting machine translation for grammatical error correction. In: Proceedings of the 12th workshop on innovative use of NLP for building educational applications. Association for computational linguistics, Copenhagen, Denmark; 2017. p. 345–356, https://doi.org/10.18653/v1/W17-5039. https://www.aclweb.org/anthology/W17-5039
Nakov P, Tiedemann J. Combining word-level and character-level models for machine translation between closely-related languages. In: Proceedings of the 50th annual meeting of the association for computational linguistics: short papers-volume 2. Association for computational linguistics; 2012. p. 301–305.
Levenshtein VI. Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Doklady 1966;10(8):707–710, Doklady Akad Nauk SSSR 1965;163(4):845–848.
Melamed ID. Bitext maps and alignment via pattern recognition. Comput Linguistics 1999;25(1):107–130. https://www.aclweb.org/anthology/J99-1003
Ciobanu AM, Dinu LP. Automatic detection of cognates using orthographic alignment. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: short papers). Association for computational linguistics, Baltimore, Maryland; 2014. p. 99–105, https://doi.org/10.3115/v1/P14-2017. https://www.aclweb.org/anthology/P14-2017
Mulloni A, Pekar V. Automatic detection of orthographics cues for cognate recognition. In: Proceedings of the fifth international conference on language resources and evaluation (LREC’06). European Language Resources Association (ELRA), Genoa, Italy, 2006. http://www.lrec-conf.org/proceedings/lrec2006/pdf/676_pdf.pdf
Simard M, Foster GF, Isabelle P. Using cognates to align sentences in bilingual corpora. In: Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative research: distributed computing-volume 2. IBM Press; 1993. p. 1071–1082.
Simard M, Foster GF, Isabelle P. Using cognates to align sentences in bilingual corpora. In: Proceedings of the 1993 conference of the Centre for Advanced Studies on collaborative research: distributed computing - volume 2. IBM Press, CASCON ’93; 1993. p. 1071–1082.
Church KW. Char\_align: a program for aligning parallel texts at the character level. In: 31st annual meeting of the association for computational linguistics, Columbus, Ohio, USA; 1993. p. 1–8. https://doi.org/10.3115/981574.981575. https://www.aclweb.org/anthology/P93-1001
Bemova A, Oliva K, Panevova J. Some problems of machine translation between closely related languages. In: Coling Budapest 1988 Volume 1: international conference on computational linguistics; 1988. http://www.aclweb.org/anthology/C88-1010
Hajic J. Machine translation of very close languages. In: Sixth applied natural language processing conference. Association for computational linguistics, Seattle, Washington, USA; 2000. p. 7–12. https://doi.org/10.3115/974147.974149. https://www.aclweb.org/anthology/A00-1002
Nakov P, Ng HT. Improved statistical machine translation for resource-poor languages using related resource-rich languages. In: Proceedings of the 2009 conference on empirical methods in natural language processing, Association for computational linguistics; 2009. p. 1358–1367. http://www.aclweb.org/anthology/D09-1141
Popović M, Ljubešić N. Exploring cross-language statistical machine translation for closely related South Slavic languages. In: Proceedings of the EMNLP’2014 workshop on language technology for closely related languages and language variants. Association for computational linguistics; 2014. p. 76–84. https://doi.org/10.3115/v1/W14-4210. http://www.aclweb.org/anthology/W14-4210
Popović M, Arcan M, Klubička F. Language related issues for machine translation between closely related South Slavic languages. In: Proceedings of the third workshop on NLP for similar languages, varieties and dialects (VarDial3). The COLING 2016 Organizing Committee; 2016. p. 43–52. http://www.aclweb.org/anthology/W16-4806
Beinborn L, Zesch T, Gurevych I. Cognate production using character-based machine translation. In: Proceedings of the sixth international joint conference on natural language processing; 2013. p. 883–891.
Menacer MA, Langlois D, Jouvet D, Fohr D, Mella O, Smaïli K. Machine translation on a parallel code-switched corpus. In: Canadian conference on artificial intelligence, Springer; 2019. p. 426–432.
Fadaee M, Monz C. Back-translation sampling by targeting difficult words in neural machine translation. In: Proceedings of the 2018 conference on empirical methods in natural language processing. Association for computational linguistics, Brussels, Belgium; 2018. p. 436–446. https://doi.org/10.18653/v1/D18-1040. https://www.aclweb.org/anthology/D18-1040
Chakravarthi BR, Arcan M, McCrae JP. Improving wordnets for under-resourced languages using machine translation. In: Proceedings of the 9th global WordNet conference, The Global WordNet Conference 2018 Committee; 2018. http://compling.hss.ntu.edu.sg/events/2018-gwc/pdfs/GWC2018_paper_16
Dhar M, Kumar V, Shrivastava M. Enabling code-mixed translation: parallel corpus creation and MT augmentation approach. In: Proceedings of the first workshop on linguistic resources for natural language processing. Association for computational linguistics, Santa Fe, New Mexico, USA; 2018. p. 131–140. https://www.aclweb.org/anthology/W18-3817
Rijhwani S, Sequiera R, Choudhury MC, Bali K. Translating codemixed tweets: a language detection based system. In: 3rd workshop on Indian language data resource and evaluation-WILDRE-3; 2016. p. 81–82.
Niu X, Denkowski M, Carpuat M. Bi-directional neural machine translation with synthetic parallel data. In: Proceedings of the 2nd workshop on neural machine translation and generation. Association for computational linguistics, Melbourne, Australia; 2018. p. 84–91. https://doi.org/10.18653/v1/W18-2710.https://www.aclweb.org/anthology/W18-2710
Riyadh RR, Kondrak G. Joint approach to deromanization of code-mixed texts. In: Proceedings of the sixth workshop on NLP for similar languages, varieties and dialects; 2019. p. 26–34.
Cohn T, Lapata M. Machine translation by triangulation: making effective use of multi-parallel corpora. In: Proceedings of the 45th annual meeting of the association of computational linguistics, Prague, Czech Republic; 2007. p. 728–735. https://www.aclweb.org/anthology/P07-1092
Utiyama M, Isahara H. A comparison of pivot methods for phrase-based statistical machine translation. In: Human Language Technologies 2007: the conference of the North American Chapter of the Association for computational linguistics; proceedings of the main conference. Association for computational linguistics, Rochester, New York; 2007. p. 484–491. https://www.aclweb.org/anthology/N07-1061
Edunov S, Ott M, Auli M, Grangier D. Understanding back-translation at scale. In: Proceedings of the 2018 conference on empirical methods in natural language processing, Association for computational linguistics, Brussels, Belgium; 2018. p. 489–500. https://doi.org/10.18653/v1/D18-1045. https://www.aclweb.org/anthology/D18-1045
Ahmadnia B, Serrano J, Haffari G. Persian-Spanish low-resource statistical machine translation through English as pivot language. In: Proceedings of the international conference recent advances in natural language processing, RANLP 2017, INCOMA Ltd., Varna, Bulgaria; 2017. p. 24–30. https://doi.org/10.26615/978-954-452-049-6_004
Poncelas A, Popović M, Shterionov D, Maillette de Buy Wenniger G, Way A. Combining PBSMT and NMT back-translated data for efficient NMT. In: Natural language processing in a deep learning world, INCOMA Ltd., Varna, Bulgaria; 2019. p. 922–931, https://doi.org/10.26615/978-954-452-056-4_107. https://www.aclweb.org/anthology/R19-1107
Tiedemann J, Cap F, Kanerva J, Ginter F, Stymne S, Östling R, Weller-Di Marco M. Phrase-based SMT for Finnish with more data, better models and alternative alignment and translation tools. In: Proceedings of the first conference on machine translation: volume 2, shared task papers. Association for computational linguistics, Berlin, Germany; 2016. p. 391–398. https://doi.org/10.18653/v1/W16-2326. https://www.aclweb.org/anthology/W16-2326
Graça M, Kim Y, Schamper J, Khadivi S, Ney H. Generalizing back-translation in neural machine translation. In: Proceedings of the fourth conference on machine translation (volume 1: research papers). Association for computational linguistics, Florence, Italy; 2019. p. 45–52,.https://doi.org/10.18653/v1/W19-5205. https://www.aclweb.org/anthology/W19-5205
Hoang VCD, Koehn P, Haffari G, Cohn T. Iterative back-translation for neural machine translation. In: Proceedings of the 2nd workshop on neural machine translation and generation, Association for computational linguistics, Melbourne, Australia; 2018. p. 18–24. https://doi.org/10.18653/v1/W18-2703. https://www.aclweb.org/anthology/W18-2703.
Prabhumoye S, Tsvetkov Y, Salakhutdinov R, Black AW. Style transfer through back-translation. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: long papers). Association for computational linguistics, Melbourne, Australia; 2018. p. 866–876. https://doi.org/10.18653/v1/P18-1080. https://www.aclweb.org/anthology/P18-1080
Kunchukuttan A, Shah M, Prakash P, Bhattacharyya P. Utilizing lexical similarity between related, low-resource languages for pivot-based smt. arXiv preprint arXiv:170207203; 2017.
Saunders D, Stahlberg F, de Gispert A, Byrne B. Domain adaptive inference for neural machine translation. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 222–228. https://doi.org/10.18653/v1/P19-1022. https://www.aclweb.org/anthology/P19-1022
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems. Curran Associates Inc., USA, NIPS’17; 2017. p. 6000–6010. http://dl.acm.org/citation.cfm?id=3295222.3295349
Wang Q, Li B, Xiao T, Zhu J, Li C, Wong DF, Chao LS. Learning deep transformer models for machine translation. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy, 2019. p. 1810–1822. https://doi.org/10.18653/v1/P19-1176. https://www.aclweb.org/anthology/P19-1176
Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar; 2014. p. 1724–1734. https://doi.org/10.3115/v1/D14-1179. https://www.aclweb.org/anthology/D14-1179
Luong T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 conference on empirical methods in natural language processing. Association for computational linguistics, Lisbon, Portugal; 2015. p. 1412–1421. https://doi.org/10.18653/v1/D15-1166. https://www.aclweb.org/anthology/D15-1166
Sen S, Gupta KK, Ekbal A, Bhattacharyya P. Multilingual unsupervised NMT using shared encoder and language-specific decoders. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 3083–3089. https://doi.org/10.18653/v1/P19-1297. https://www.aclweb.org/anthology/P19-1297
Wang Y, Zhou L, Zhang J, Zhai F, Xu J, Zong C. A compact and language-sensitive multilingual translation method. In: Proceedings of the 57th annual meeting of the association for computational linguistics, Florence, Italy; 2019. p. 1213–1223. https://doi.org/10.18653/v1/P19-1117. https://www.aclweb.org/anthology/P19-1117
Ha T, Niehues J, Waibel AH. Toward multilingual neural machine translation with universal encoder and decoder. In: Proceedings of the international workshop on spoken language translation; 2016. http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_5.pdf
Chakravarthi BR, Arcan M, McCrae JP. Comparison of different orthographies for machine translation of under-resourced Dravidian languages. In: 2nd conference on language, data and knowledge (LDK 2019), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. Open access series in informatics (OASIcs); 2019;70. p. 6:1–6:14, https://doi.org/10.4230/OASIcs.LDK.2019.6. http://drops.dagstuhl.de/opus/volltexte/2019/10370
Chakravarthi BR, Arcan M, McCrae JP. Wordnet gloss translation for under-resourced languages using multilingual neural machine translation. In: Proceedings of the second workshop on multilingualism at the intersection of knowledge bases and machine translation; 2019. p. 1–7.
Chakravarthi BR, Priyadharshini R, Stearns B, Jayapal A, S S, Arcan M, Zarrouk M, McCrae JP. Multilingual multimodal machine translation for Dravidian languages utilizing phonetic transcription. In: Proceedings of the 2nd workshop on technologies for MT of low resource languages. European Association for Machine Translation, Dublin, Ireland; 2019. p. 56–63. https://www.aclweb.org/anthology/W19-6809
Li X, Michel P, Anastasopoulos A, Belinkov Y, Durrani N, Firat O, Koehn P, Neubig G, Pino J, Sajjad H. Findings of the first shared task on machine translation robustness. In: Proceedings of the fourth conference on machine translation (volume 2: shared task papers, day 1), Association for computational linguistics, Florence, Italy; 2019. p. 91–102, https://doi.org/10.18653/v1/W19-5303. https://www.aclweb.org/anthology/W19-5303
Belinkov Y, Bisk Y. Synthetic and natural noise both break neural machine translation. In: International conference on learning representations; 2018. https://openreview.net/forum?id=BJ8vJebC-
Kim Y, Jernite Y, Sontag D, Rush AM. Character-aware neural language models. In: Proceedings of the thirteenth AAAI conference on artificial intelligence. AAAI Press, AAAI; 2016:16. p. 2741–9.
Cherry C, Foster G, Bapna A, Firat O, Macherey W. Revisiting character-based neural machine translation with capacity and compression. In: Proceedings of the 2018 conference on empirical methods in natural language processing, association for computational linguistics, Brussels, Belgium; 2018. p. 4295–4305. https://doi.org/10.18653/v1/D18-1461. https://www.aclweb.org/anthology/D18-1461
Costa-jussà MR, Fonollosa JAR. Character-based neural machine translation. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: short papers). Association for computational linguistics, Berlin, Germany; 2016. p. 357–361. https://doi.org/10.18653/v1/P16-2058. https://www.aclweb.org/anthology/P16-2058.
Lee J, Cho K, Hofmann T. Fully character-level neural machine translation without explicit segmentation. Trans Assoc Comput Linguistics. 2017;5:365–78. https://doi.org/10.1162/tacl_a_00067. https://www.aclweb.org/anthology/Q17-1026
Yang Z, Chen W, Wang F, Xu B. A character-aware encoder for neural machine translation. In: Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical papers, The COLING 2016 Organizing Committee, Osaka, Japan; 2016. p. 3063–3070. https://www.aclweb.org/anthology/C16-1288
Chitnis R, DeNero J. Variable-length word encodings for neural translation models. In: Proceedings of the 2015 conference on empirical methods in natural language processing, association for computational linguistics, Lisbon, Portugal; 2015. p. 2088–2093. https://doi.org/10.18653/v1/D15-1249. https://www.aclweb.org/anthology/D15-1249
Ding S, Renduchintala A, Duh K. A call for prudent choice of subword merge operations in neural machine translation. In: Proceedings of machine translation summit XVII volume 1: research track, European Association for Machine Translation, Dublin, Ireland; 2019. p. 204–213. URL https://www.aclweb.org/anthology/W19-6620
Schuster M, Nakajima K. Japanese and Korean voice search. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP); 2012. p. 5149–5152. https://doi.org/10.1109/ICASSP.2012.6289079
Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144; 2016.
Kudo T, Richardson J. Sentence piece: a simple and language independent subword tokenizer and detokenizer for neural text processing. In: Proceedings of the 2018 conference on empirical methods in natural language processing: system demonstrations. Association for Computational Linguistics, Brussels, Belgium; 2018. p. 66–71. https://doi.org/10.18653/v1/D18-2012. https://www.aclweb.org/anthology/D18-2012
Kudo T. Subword regularization: Improving neural network translation models with multiple subword candidates. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: long papers), Melbourne, Australia; 2018. p. 66–75. https://doi.org/10.18653/v1/P18-1007. https://www.aclweb.org/anthology/P18-1007
Klein G, Kim Y, Deng Y, Senellart J, Rush AM. OpenNMT: open-source toolkit for neural machine translation. CoRR arXiv:abs/1701.02810; 2017.
Jha S, Sudhakar A, Singh AK. Learning cross-lingual phonological and orthagraphic adaptations: a case study in improving neural machine translation between low-resource languages. J Language Model. 2019;7(2):101–42.
Google Scholar
Bhattacharyya P, Khapra MM, Kunchukuttan A. Statistical machine translation between related languages. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: tutorial abstracts, association for computational linguistics, San Diego, California; 2016. p. 17–20, https://doi.org/10.18653/v1/N16-4006. URL https://www.aclweb.org/anthology/N16-4006
Grönroos SA, Virpioja S, Kurimo M. Cognate-aware morphological segmentation for multilingual neural translation. In: Proceedings of the third conference on machine translation: shared task papers, association for computational linguistics, Belgium, Brussels; 2018. p. 386–393. https://doi.org/10.18653/v1/W18-6410. https://www.aclweb.org/anthology/W18-6410
Cherry C, Suzuki H. Discriminative substring decoding for transliteration. In: Proceedings of the 2009 conference on empirical methods in natural language processing, association for computational linguistics; 2009. p. 1066–1075. http://www.aclweb.org/anthology/D09-1111
Bhat RA, Bhat IA, Jain N, Sharma DM. A house united: bridging the script and lexical barrier between Hindi and Urdu. In: COLING 2016, 26th international conference on computational linguistics. Proceedings of the conference: technical papers, December 11–16, 2016, Osaka, Japan; 2016. p. 397–408. http://aclweb.org/anthology/C/C16/C16-1039.pdf
Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting of the association for computational linguistics. Association for computational linguistics, Philadelphia, Pennsylvania, USA; 2002. p. 311–318. https://doi.org/10.3115/1073083.1073135. https://www.aclweb.org/anthology/P02-1040
Kunchukuttan A, Khapra M, Singh G, Bhattacharyya P. Leveraging orthographic similarity for multilingual neural transliteration. Trans Assoc Comput Linguistics 2018;6:303–316. http://aclweb.org/anthology/Q18-1022
Baniata LH, Park S. Park SB. A neural machine translation model for Arabic dialects that utilizes multitask learning (MTL). Comput Intell Neurosci. 2018.
Halpern J. Very large-scale lexical resources to enhance Chinese and Japanese machine translation. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan; 2018. https://www.aclweb.org/anthology/L18-1137
Ugawa A, Tamura A, Ninomiya T, Takamura H, Okumura M. Neural machine translation incorporating named entity. In: Proceedings of the 27th international conference on computational linguistics. Association for computational linguistics, Santa Fe, New Mexico, USA; 2018. p. 3240–3250. https://www.aclweb.org/anthology/C18-1274
Birch A, Haddow B, Tito I, Barone AVM, Bawden R, Sánchez-Martínez F, Forcada ML, Esplà-Gomis M, Sánchez-Cartagena V, Pérez-Ortiz JA, Aziz W, Secker A, van der Kreeft P. Global under-resourced media translation (GoURMET). In: Proceedings of machine translation summit XVII volume 2: translator, project and user tracks. European Association for Machine Translation, Dublin, Ireland; 2019. p. 122–122. https://www.aclweb.org/anthology/W19-6723
Chakravarthi BR, Jose N, Suryawanshi S, Sherly E, McCrae JP (2020) A sentiment analysis dataset for code-mixed Malayalam-English. In: Proceedings of the 1st joint workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL). European Language Resources Association (ELRA). France: Marseille; 2020.
Chakravarthi BR, Muralidaran V, Priyadharshini R, McCrae JP (2020b) Corpus creation for sentiment analysis in code-mixed Tamil-English text. In: Proceedings of the 1st joint workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL). European Language Resources Association (ELRA). France: Marseille; 2020.
Jose N, Chakravarthi BR, Suryawanshi S, Sherly E, McCrae JP. A survey of current datasets for code-switching research. In: 2020 6th international conference on advanced computing and communication systems (ICACCS); 2020.
Priyadharshini R, Chakravarthi BR, Vegupatti M, McCrae JP. Named entity recognition for code-mixed Indian corpus using meta embedding. In: 2020 6th international conference on advanced computing and communication systems (ICACCS); 2020.
Ranjan P, Raja B, Priyadharshini R, Balabantaray RC. A comparative study on code-mixed data of Indian social media vs formal text. In: 2016 2nd international conference on contemporary computing and informatics (IC3I); 2016. p. 608–611. https://doi.org/10.1109/IC3I.2016.7918035
Tiedemann J. Synchronizing translated movie subtitles. In: Proceedings of the sixth international conference on language resources and evaluation (LREC’08). European Language Resources Association (ELRA), Marrakech, Morocco; 2008. http://www.lrec-conf.org/proceedings/lrec2008/pdf/484_paper.pdf
Fadaee M, Bisazza A, Monz C. Data augmentation for low-resource neural machine translation. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 2: short papers), Vancouver, Canada; 2017. p. 567–573. https://doi.org/10.18653/v1/P17-2090. https://www.aclweb.org/anthology/P17-2090
Li Z, Specia L. Improving neural machine translation robustness via data augmentation: Beyond back-translation. In: Proceedings of the 5th workshop on noisy user-generated text (W-NUT 2019). Association for computational linguistics, Hong Kong, China; 2019. p. 328–336, https://doi.org/10.18653/v1/D19-5543. https://www.aclweb.org/anthology/D19-5543
Song K, Zhang Y, Yu H, Luo W, Wang K, Zhang M. Code-switching for enhancing NMT with pre-specified translation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). Association for computational linguistics, Minneapolis, Minnesota; 2019. p. 449–459. https://doi.org/10.18653/v1/N19-1044. https://www.aclweb.org/anthology/N19-1044
Dou Q, Vaswani A, Knight K. Beyond parallel data: Joint word alignment and decipherment improves machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Association for computational linguistics, Doha, Qatar; 2014. p. 557–565. https://doi.org/10.3115/v1/D14-1061. https://www.aclweb.org/anthology/D14-1061
Koehn P, Knight K. Estimating word translation probabilities from unrelated monolingual corpora using the em algorithm. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI Press; 2000. p. 711–715.
Ravi S, Knight K. Deciphering foreign language. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. Association for computational linguistics, Portland, Oregon, USA; 2011. p. 12–21. https://www.aclweb.org/anthology/P11-1002
Artetxe M, Labaka G, Agirre E. Unsupervised statistical machine translation. In: Proceedings of the 2018 conference on empirical methods in natural language processing. Association for computational linguistics, Brussels, Belgium; 2018. p. 3632–3642, https://doi.org/10.18653/v1/D18-1399. https://www.aclweb.org/anthology/D18-1399
Klementiev A, Irvine A, Callison-Burch C, Yarowsky D. Toward statistical machine translation without parallel corpora. In: Proceedings of the 13th conference of the European chapter of the association for computational linguistics. Association for computational linguistics, Avignon, France; 2012. p. 130–140. https://www.aclweb.org/anthology/E12-1014
Artetxe M, Labaka G, Agirre E, Cho K. Unsupervised neural machine translation. In: Proceedings of the sixth international conference on learning representations; 2018.
Rosner M, Sultana K. Automatic methods for the extension of a bilingual dictionary using comparable corpora. In: Proceedings of the ninth international conference on language resources and evaluation (LREC’14). European Language Resources Association (ELRA), Reykjavik, Iceland; 2014. p. 3790–3797. http://www.lrec-conf.org/proceedings/lrec2014/pdf/1169_Paper.pdf
Turcato D. Automatically creating bilingual lexicons for machine translation from bilingual text. In: 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics, volume 2, association for computational linguistics, Montreal, Quebec, Canada; 1998. p. 1299–1306, https://doi.org/10.3115/980691.980781. https://www.aclweb.org/anthology/P98-2212
Haghighi A, Liang P, Berg-Kirkpatrick T, Klein D. Learning bilingual lexicons from monolingual corpora. In: Proceedings of ACL-08: HLT, association for computational linguistics, Columbus, Ohio; 2008. p. 771–779. https://www.aclweb.org/anthology/P08-1088
Berg-Kirkpatrick T, Bouchard-Côté A, DeNero J, Klein D. Painless unsupervised learning with features. In: Human language technologies: the 2010 annual conference of the North American Chapter of the Association for computational linguistics, Los Angeles, California; 2010. p. 582–590. https://www.aclweb.org/anthology/N10-1083
Dyer C, Clark JH, Lavie A, Smith NA. Unsupervised word alignment with arbitrary features. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. Association for computational linguistics, Portland, Oregon, USA; 2011. p. 409–419. https://www.aclweb.org/anthology/P11-1042
Hauer B, Nicolai G, Kondrak G. Bootstrapping unsupervised bilingual lexicon induction. In: Proceedings of the 15th conference of the European Chapter of the Association for Computational Linguistics: volume 2, short papers, Valencia, Spain; 2017. p. 619–624. https://www.aclweb.org/anthology/E17-2098
Riley P, Gildea D. Orthographic features for bilingual lexicon induction. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 2: short papers). Association for computational linguistics, Melbourne, Australia; 2018. p. 390–394. https://doi.org/10.18653/v1/P18-2062. https://www.aclweb.org/anthology/P18-2062
Chu C, Nakazawa T, Kurohashi S. Improving statistical machine translation accuracy using bilingual lexicon extraction with paraphrases. In: Proceedings of the 28th Pacific Asia conference on language, information and computing, Department of Linguistics, Chulalongkorn University, Phuket, Thailand; 2014. p. 262–271. URL https://www.aclweb.org/anthology/Y14-1032
Dou Q, Knight K. Dependency-based decipherment for resource-limited machine translation. In: Proceedings of the 2013 conference on empirical methods in natural language processing. Association for computational linguistics, Seattle, Washington, USA; 2013. p. 1668–1676. https://www.aclweb.org/anthology/D13-1173
Bloodgood M, Strauss B. Acquisition of translation lexicons for historically unwritten languages via bridging loanwords. In: Proceedings of the 10th workshop on building and using comparable Corpora, association for computational linguistics; 2017. p. 21–25. https://doi.org/10.18653/v1/W17-2504. http://aclweb.org/anthology/W17-2504