Skip to main content
Log in

Diagnosis-Steganography-Transmission: An Innovative Integrated Paradigm for ECG Healthcare

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The developing prominence of edge computing and Internet of Things-based wearables coupled with body sensors offer us a unique idea of integrating the Diagnosis, Steganography, and Transmission tasks in the healthcare domain. In this paper, we present an innovative Diagnosis-Steganography-Transmission architecture for health monitoring and real-time diagnosis especially designed for Coronary Artery Disease diagnostic purposes. The architecture works by extracting the patient’s health state by a real-time execution of a preliminary diagnostic algorithm in the local embedded computing platform before the ECG data are transmitted over wireless networks for further analysis. Local pre-diagnosis assists the operation of the communication module in deciding when and how much data should be transmitted and the given quality. The novelty of the proposed work is that the integration of diagnosis, steganography, and communication tasks in a unified platform, because unequal importance of physiological signals (e.g., ECG) feature offers computing distribution of diagnosis, UEP-based steganography, and UEP-based transmission are inherently connected with each other. Using the proposed framework, the steganography embedder, source encoder, and channel encoder in the communication module effectively reconfigure the intricacy of the control factors to match the energy constraints while maintaining the reconstruction quality of the medical signal. Moreover, the diagnosis module also reconfigures the complexity of the process of diagnosis to match the communication bandwidth constraints. By deep CNN-based ECG classification for local pre-diagnosis, an immense heap of energy-saving is created by a huge diminishing in the transmission overhead (up to 99.3% in typical application set-up) as compared to always-on communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sahu N, Peng D, Sharif H. An innovative approach to integrate unequal protection-based steganography and progressive transmission of physiological data. SN Appl Sci. 2020;2(2):1–23.

    Article  Google Scholar 

  2. Sahu N, Peng D, Sharif H. Joint Steganography-Source-Channel Coding for Wireless Physiological Signal Transmission. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–6);2018.

  3. Sahu N, Peng D, Sharif H. Unequal steganography with unequal error protection for wireless physiological signal transmission. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-6);2017.

  4. Wen C, Yeh MF, Chang KC, Lee RG. Real-time ECG telemonitoring system design with mobile phone platform. Measurement. 2008;41(4):463–70.

    Article  Google Scholar 

  5. Xu X, Liu Y. ECG QRS complex detection using slope vector waveform (SVW) algorithm. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2004, September;(Vol. 2, pp. 3597–3600). IEEE.

  6. Zhao Q, Zhang L. ECG feature extraction and classification using wavelet transform and support vector machines. In 2005 International Conference on Neural Networks and Brain 2005 ;(Vol. 2, pp. 1089–1092). IEEE.

  7. Tadejko P, Rakowski W. Mathematical morphology based ECG feature extraction for the purpose of heartbeat classification. In 6th International Conference on Computer Information Systems and Industrial Management Applications (CISIM’07) 2007;(pp. 322–327). IEEE.

  8. Sufi F, Mahmoud S, Khalil I. A new ECG obfuscation method: A joint feature extraction & corruption approach. In 2008 International Conference on Information Technology and Applications in Biomedicine 2008;(pp. 334–337). IEEE.

  9. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32(3):230–6.

    Article  Google Scholar 

  10. Sivannarayana N, Reddy DC. Biorthogonal wavelet transforms for ECG parameters estimation. Med Eng Phys. 1999;21(3):167–74.

    Article  Google Scholar 

  11. Fang WC, Huang HC, Tseng SY. Design of heart rate variability processor for portable 3-lead ECG monitoring system-on-chip. Expert Syst Appl. 2013;40(5):1491–504.

    Article  Google Scholar 

  12. Al Ameen M, Liu J, Kwak K. Security and privacy issues in wireless sensor networks for healthcare applications. J Med Syst. 2012;36(1):93–101.

    Article  Google Scholar 

  13. Liu J, Tang G, Sun Y. A secure steganography for privacy protection in healthcare system. J Med Syst. 2013;37(2):9918.

    Article  Google Scholar 

  14. Ibaida A, Khalil I, Al-Shammary D. Embedding patients confidential data in ECG signal for healthcare information systems. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010;(pp. 3891–3894). IEEE.

  15. Ibaida A, Khalil I, Van Schyndel R. A low complexity high capacity ECG signal watermark for wearable sensor-net health monitoring system. In 2011 Computing in Cardiology 2011;(pp. 393–396). IEEE.

  16. Ibaida A, Khalil I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans Biomed Eng. 2013;60(12):3322–30.

    Article  Google Scholar 

  17. Mai V, Khalil I, Ibaida A. Steganography-based access control to medical data hidden in electrocardiogram. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013;pp. 1302–1305. IEEE.

  18. Pham TD, Tran D, Ma W. A proposed blind dwt-svd watermarking scheme for eeg data. In International Conference on Neural Information Processing 2015;pp. 69–76. Springer, Cham.

  19. Jero SE, Ramu P, Ramakrishnan S. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission. J Med Syst. 2014;38(10):132.

    Article  Google Scholar 

  20. Jero SE, Ramu P, Ramakrishnan S. Steganography in arrhythmic electrocardiogram signal. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015;pp. 1409–1412. IEEE.

  21. Ramu P, Swaminathan R. Imperceptibility-Robustness tradeoff studies for ECG steganography using continuous ant colony optimization. Expert Syst Appl. 2016;49:123–35.

    Article  Google Scholar 

  22. Jero SE, Ramu P, Ramakrishnan S. ECG steganography using curvelet transform. Biomed Signal Process Control. 2015;22:161–9.

    Article  Google Scholar 

  23. Chen ST, Guo YJ, Huang HN, Kung WM, Tseng KK, Tu SY. Hiding patients confidential data in the ECG signal via a transform-domain quantization scheme. J Med Syst. 2014;38(6):54.

    Article  Google Scholar 

  24. Wang H, Zhang W, Yu N. Protecting patient confidential information based on ECG reversible data hiding. Multimed Tools Appl. 2016;75(21):13733–47.

    Article  Google Scholar 

  25. Yang CY, Wang WF. Effective electrocardiogram steganography based on coefficient alignment. J Med Syst. 2016;40(3):66.

    Article  Google Scholar 

  26. Liji CA, Indiradevi KP, Babu KA. Integer-to-integer wavelet transform based ECG steganography for securing patient confidential information. Procedia Technol. 2016;24:1039–47.

    Article  Google Scholar 

  27. Kozat SS, Vlachos M, Lucchese C, Van Herle H, Philip SY. Embedding and retrieving private metadata in electrocardiograms. J Med Syst. 2009;33(4):241–59.

    Article  Google Scholar 

  28. Sufi F, Khalil I. A new feature detection mechanism and its application in secured ECG transmission with noise masking. J Med Syst. 2009;33(2):121–32.

    Article  Google Scholar 

  29. Dogan S, Tuncer T, Avci E, Gulten A. A new watermarking system based on discrete cosine transform (DCT) in color biometric images. J Med Syst. 2012;36(4):2379–85.

    Article  Google Scholar 

  30. Tseng KK, He X, Kung WM, Chen ST, Liao M, Huang HN. Wavelet-based watermarking and compression for ECG signals with verification evaluation. Sensors. 2014;14(2):3721–36.

    Article  Google Scholar 

  31. Chao HM, Hsu CM, Miaou SG. A data-hiding technique with authentication, integration, and confidentiality for electronic patient records. IEEE Trans Inf Technol Biomed. 2002;6(1):46–53.

    Article  Google Scholar 

  32. Zheng KM, Qian X. Reversible data hiding for electrocardiogram signal based on wavelet transforms. In 2008 International Conference on Computational Intelligence and Security 2008;Vol. 1, pp. 295–299. IEEE.

  33. Nayak J, Bhat PS, Acharya R, Kumar MS. Efficient storage and transmission of digital fundus images with patient information using reversible watermarking technique and error control codes. J Med Syst. 2009;33(3):163–71.

    Article  Google Scholar 

  34. Sherwood P G, Zeger K. Progressive image coding on noisy channels. In Proceedings DCC’97. Data Compression Conference 1997;(pp. 72-81). IEEE.

  35. Said A, Pearlman WA. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol. 1996;6(3):243–50.

    Article  Google Scholar 

  36. Chande V, Farvardin N. Joint source-channel coding for progressive transmission of embedded source coders. In Proceedings DCC’99 Data Compression Conference (Cat. No. PR00096) 1999;pp. 52–61. IEEE.

  37. Sherwood PG, Tian X, Zeger K. Channel code blocklength and rate optimization for progressive image transmission. In WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No. 99TH8466) 1999;(Vol. 2, pp. 978–982). IEEE.

  38. Hamzaoui R, Stankovic V, Xiong Z. Fast algorithm for distortion-based error protection of embedded image codes. IEEE Trans Image Process. 2005;14(10):1417–21.

    Article  Google Scholar 

  39. Wang W, Peng D, Wang H, Sharif H, Chen HH Energy efficient multirate interaction in distributed source coding and wireless sensor network. In 2007 IEEE Wireless Communications and Networking Conference 2007;pp. 4091–4095. IEEE.

  40. Wang W, Peng D, Wang H, Sharif H, Chen H H. Taming underlying design for energy efficient distributed source coding in multirate wireless sensor network. In 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring 2007;pp. 124–129. IEEE.

  41. Wang H, Peng D, Wang W, Sharif H, Chen HH. Interplay between routing and distributed source coding in wireless sensor network. In 2007 IEEE International Conference on Communications 2007;pp. 3776–3781. IEEE.

  42. Wang W, Peng D, Wang H, Sharif H, Chen HH. Optimal image component transmissions in multirate wireless sensor networks. In IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference 2007;pp. 976–980. IEEE.

  43. Ma T, Shrestha PL, Hempel M, Peng D, Sharif H, Chen HH. Assurance of energy efficiency and data security for ECG transmission in BASNs. IEEE Trans Biomed Eng. 2012;59(4):1041–8.

    Article  Google Scholar 

  44. Wang W, Peng D, Wang H, Sharif H, Chen HH. Energy-constrained distortion reduction optimization for wavelet-based coded image transmission in wireless sensor networks. IEEE Trans Multimed. 2008;10(6):1169–80.

    Article  Google Scholar 

  45. Ma T, Hempel M, Peng D, Sharif, H. Rate-switching unequal error protection for wireless electrocardiogram (ECG) transmission. In 2010-MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE 2010;pp. 1181–1186. IEEE.

  46. Santos J, Peng D, Hempel M, Sharif H. Fidelity-preserving coefficient truncation method for wavelet-based compressors for biomedical IoT applications. In 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS) 2017;pp. 1–8. IEEE.

  47. Santos J, Peng D, Hempel M, Sharif H. Towards a Physiologically-Aware Architecture for Transmission of Biomedical Signals in BASNs/IoT. In 2018 IEEE International Conference on Communications (ICC) 2018;pp. 1–6. IEEE.

  48. Al-Fahoum AS. Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans Inf Technol Biomed. 2006;10(1):182–91.

    Article  Google Scholar 

  49. Mohapatra S, Dutt N, Nicolau A, Venkatasubramanian N. DYNAMO: A cross-layer framework for end-to-end QoS and energy optimization in mobile handheld devices. IEEE J Sel Areas Commun. 2007;25(4):722–37.

    Article  Google Scholar 

  50. Panayides AS, Pattichis MS, Pattichis CS. Mobile-health systems use diagnostically driven medical video technologies [life sciences]. IEEE Signal Process Mag. 2013;30(6):163–72.

    Article  Google Scholar 

  51. Chung WY, Yau CL, Shin KS, Myllyla R. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007;pp. 3705–3708. IEEE.

  52. Alemdar H, Ersoy C. Wireless sensor networks for healthcare: A survey. Comput Netw. 2010;54(15):2688–710.

    Article  Google Scholar 

  53. Konstantas D, Herzog R. Continuous monitoring of vital constants for mobile users: the MobiHealth approach. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439) 2003;(Vol. 4, pp. 3728–3731). IEEE.

  54. Suh MK, Chen CA, Woodbridge J, Tu MK, Kim JI, Nahapetian A, Evangelista LS, Sarrafzadeh M. A remote patient monitoring system for congestive heart failure. J Med Syst. 2011;35(5):1165–79.

    Article  Google Scholar 

  55. Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput Commun Rev. 2008;39(1):68–73.

    Article  Google Scholar 

  56. Cuervo ABE, Cho DK, Wolman A, Saroiu S, Chandra R, Bahl P. Making smartphones last longer with code offload. In 8th international conference on Mobile systems, applications, and services 2010;pp. 49–62.

  57. Satyanarayanan M, Bahl V, Caceres R, Davies N. The case for vm-based cloudlets in mobile computing. IEEE pervasive Computing, 2009;(Vol. 8, no. 4, pp. 14–23).

  58. Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing 2012;pp. 13–16. ACM.

  59. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: vision and challenges. IEEE Int. Things J. 2016;3(5):637–46.

    Article  Google Scholar 

  60. Parsa M, Panda P, Sen S, Roy K. Staged inference using conditional deep learning for energy efficient real-time smart diagnosis. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017;pp. 78–81. IEEE.

  61. Hu F, Jiang M, Celentano L, Xiao Y. Robust medical ad hoc sensor networks (MASN) with wavelet-based ECG data mining. Ad Hoc Netw. 2008;6(7):986–1012.

    Article  Google Scholar 

  62. Lee KH, Kung SY, Verma N. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J Signal Process Syst. 2012;69(3):339–49.

    Article  Google Scholar 

  63. Giri D, Acharya UR, Martis RJ, Sree SV, Lim TC, VI, TA, Suri JS. Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl-Based Syst. 2013;37:274–82.

  64. Vu THN, Park N, Lee YK, Lee Y, Lee JY, Ryu KH. Online discovery of Heart Rate Variability patterns in mobile healthcare services. J Syst Softw. 2010;83(10):1930–40.

    Article  Google Scholar 

  65. Karlen W, Mattiussi C, Floreano D. Sleep and wake classification with ECG and respiratory effort signals. IEEE Trans Biomed Circuits Syst. 2009;3(2):71–8.

    Article  Google Scholar 

  66. Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst. 2002;26(5):445–63.

    Article  Google Scholar 

  67. Yeh JY, Wu TH, Tsao CW. Using data mining techniques to predict hospitalization of hemodialysis patients. Decis Support Syst. 2011;50(2):439–48.

    Article  Google Scholar 

  68. Chatterjee B, Sen S, Cao N, Raychowdhury A. Context-aware intelligence in resource-constrained iot nodes: opportunities and challenges. IEEE Des Test. 2019;36(2):7–40.

    Article  Google Scholar 

  69. Cao N, Nasir SB, Sen S, Raychowdhury A. Self-optimizing IoT wireless video sensor node with in-situ data analytics and context-driven energy-aware real-time adaptation. IEEE Trans Circuits Syst I Regul Pap. 2017;64(9):2470–80.

    Article  Google Scholar 

  70. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed. 2018;161:1–13.

    Article  Google Scholar 

  71. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci. 2017;415:190–8.

    Article  Google Scholar 

  72. Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci. 2017;405:81–90.

    Article  Google Scholar 

  73. Acharya UR, Fujita H, Adam M, Lih OS, Sudarshan VK, Hong TJ, San TR. Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study. Information Sciences. 2017;377:17–29.

  74. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, San Tan R. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017;89:389–96.

    Article  Google Scholar 

  75. Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Adam M, Hagiwara Y. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Fut Gen Comput Syst. 2018;79:952–9.

  76. Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, Acharya UR. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med. 2018;94:19–26.

  77. Pourbabaee B, Roshtkhari MJ, Khorasani K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst. 2017;48(12):2095–104.

    Article  Google Scholar 

  78. Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) 2017;pp. 141–144. IEEE.

  79. Luo K, Li J, Wang Z, Cuschieri A. Patient-specific deep architectural model for ECG classification. J Healthcare Eng. 2017.

  80. Cheng M, Sori WJ, Jiang F, Khan A, Liu S. Recurrent neural network-based classification of ecg signal features for obstruction of sleep apnea detection. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) 2017;(Vol. 2, pp. 199–202). IEEE.

  81. Hu D, Wang L, Jiang W, Zheng S, Li B. A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access. 2018;6:38303–14.

    Article  Google Scholar 

  82. Zhu J, Kaplan R, Johnson J, Fei-Fei L. Hidden: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV) 2018;pp. 657–672.

  83. Jin C, Wang S. Applications of a neural network to estimate watermark embedding strength. In Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS’07) 2007;(pp. 68-68). IEEE.

  84. Kandi H, Mishra D, Gorthi SRS. Exploring the learning capabilities of convolutional neural networks for robust image watermarking. Comput Secur. 2017;65:247–68.

    Article  Google Scholar 

  85. Mun SM, Nam SH, Jang HU, Kim D, Lee HK. A robust blind watermarking using convolutional neural network. arXiv:1704.032482017.

  86. Hayes J, Danezis G. Generating steganographic images via adversarial training. In Advances in Neural Information Processing Systems 2017;pp. 1954–1963.

  87. Baluja S. Hiding images in plain sight: deep steganography. In Advances in Neural Information Processing Systems 2017;pp. 2069–2079.

  88. Uchida Y, Nagai Y, Sakazawa S, Satoh SI. Embedding watermarks into deep neural networks. In Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval2017;pp. 269–277. ACM.

  89. Bourtsoulatze E, Kurka DB, Gündüz D. Deep joint source-channel coding for wireless image transmission. IEEE Transactions on Cognitive Communications and Networking.2019.

  90. Qin Z, Ye H, Li GY, Juang BHF. Deep learning in physical layer communications. IEEE Wirel Commun. 2019;26(2):93–9.

    Article  Google Scholar 

  91. O’Shea T, Hoydis J. An introduction to deep learning for the physical layer. IEEE Trans Cognit Commun Netw. 2017;3(4):563–75.

    Article  Google Scholar 

  92. Lee CH, Lin JW, Chen PH, Chang YC. Deep Learning-Constructed Joint Transmission-Recognition for Internet of Things. IEEE Access. 2019;7:76547–61.

    Article  Google Scholar 

  93. Tang J, Sun D, Liu S, Gaudiot JL. Enabling deep learning on IoT devices. Computer. 2017;50(10):92–6.

    Article  Google Scholar 

  94. Yao S, Zhao Y, Zhang A, Hu S, Shao H, Zhang C, Abdelzaher T. Deep learning for the internet of things. Computer. 2018;51(5):32–41.

  95. Li H, Ota K, Dong M. Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Netw. 2018;32(1):96–101.

    Article  Google Scholar 

  96. Khelifi H, Luo S, Nour B, Sellami A, Moungla H, Ahmed SH, Guizani M. Bringing deep learning at the edge of information-centric Internet of Things. IEEE Commun Lett. 2018;23(1):52–5.

    Article  Google Scholar 

  97. Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun Surv Tutor. 2018;20(4):2923–60.

    Article  Google Scholar 

  98. Zhou J, Wang Y, Ota K, Dong M. AAIoT: ccelerating artificial intelligence in IoT systems. IEEE Wirel Commun Lett. 2019.

  99. Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2019;2(1), 1–127.

  100. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press, 2016.

  101. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Berg AC. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.

  102. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems 2015;pp. 91-99.

  103. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 2015; pp. 1–9.

  104. Bengio Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of ICML workshop on unsupervised and transfer learning 2012;pp. 17–36.

  105. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems 2012;pp. 1097–1105.

  106. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\) 0.5 MB model size. arXiv:1602.073602016.

  107. Kim JH, Seo SY, Song CG, Kim KS. Assessment of electrocardiogram rhythms by GoogLeNet deep neural network architecture. J Healthcare Eng 2019.

  108. Rachakonda L, Mohanty SP, Kougianos E, Sundaravadivel P. Stress-Lysis: a DNN-integrated edge device for stress level detection in the IoMT. IEEE Trans Consum Electron. 2019;65(4):474–83.

    Article  Google Scholar 

  109. Rachakonda L, Mohanty SP, Kougianos E. iLog: an intelligent device for automatic food intake monitoring and stress detection in the IoMT. IEEE Trans Consum Electron. 2020;66(2):115–24.

    Article  Google Scholar 

  110. Nath RK, Thapliyal H, Caban-Holt A, Mohanty SP. Machine learning based solutions for real-time stress monitoring. IEEE Consumer Electron MagZ. 2020;9(5):34–41.

    Article  Google Scholar 

  111. Thapliyal H, Khalus V, Labrado C. Stress detection and management: a survey of wearable smart health devices. IEEE Consumer Electron Magz. 2017;6(4):64–9.

    Article  Google Scholar 

  112. Greene S, Thapliyal H, Caban-Holt A. A survey of affective computing for stress detection: evaluating technologies in stress detection for better health. IEEE Consumer Electron Magz. 2016;5(4):44–56.

    Article  Google Scholar 

  113. Nath RK, Thapliyal H. Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Trans Consum Electron. 2021;67(1):30–9.

    Article  Google Scholar 

  114. Baim DS, Colucci WS, Monrad ES, Smith HS, Wright RF, Lanoue A, Gauthier DF, Ransil BJ, Grossman W, Braunwald E. Survival of patients with severe congestive heart failure treated with oral milrinone. J Am Coll Cardiol. 1986;7(3):661–70.

    Article  Google Scholar 

  115. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 2000;101(23), e215–e220.

  116. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

    Article  Google Scholar 

  117. Mallat S, Zhong S. Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell. 1992;14(7):710–32.

    Article  Google Scholar 

  118. Botta A, De Donato W, Persico V, Pescapé A. Integration of cloud computing and internet of things: a survey. Fut Gen Comput Syst. 2016;56:684–700.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Sahu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, N., Peng, D. & Sharif, H. Diagnosis-Steganography-Transmission: An Innovative Integrated Paradigm for ECG Healthcare. SN COMPUT. SCI. 2, 332 (2021). https://doi.org/10.1007/s42979-021-00721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00721-6

Keywords

Navigation