Skip to main content

A Survey on Mobile Applications for Smart Agriculture

Making Use of Mobile Software in Modern Farming

Abstract

The increasing global demand for food and nutrition security has raised the need to automate processes in modern farming. As such, a promising way to automate those processes is by using smart agriculture applications (SAAs). Different studies in the literature classify these applications based on agricultural themes, agricultural domains, and farming scenarios. However, this classification is not sufficient for researchers and industry to gain deeper insights on software engineering issues pertaining to SAAs. In this survey, we explore SAAs and further classify them based on architectural models, supported software engineering issues, and target mobile platforms. The survey results show that SAAs in general (1) follow different architectural models, (2) are targeted for different mobile platforms, and (3) satisfy different software engineering issues. Most importantly, the key findings from this study reveal that SAAs can fail to meet their intended purpose if developers ignore key software engineering issues. These findings can be used as a starting point for researchers and industry to implement smart agriculture related mobile applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agarwal S, De S. Rural broadband access via clustered collaborative communication. IEEE ACM Trans Netw. 2018;26(5):2160–73. https://doi.org/10.1109/TNET.2018.2865464.

    Article  Google Scholar 

  2. Aitkenhead M, Donnelly D, Coull M. Black H E-SMART: environmental sensing for monitoring and advising in real-time. In: Hřebíček J, Schimak G, Kubásek M, Rizzoli AE, editors. Environmental software systems. Fostering Information Sharing. Berlin: Springer; 2013. p. 129–42. https://doi.org/10.1007/978-3-642-41151-9_13.

    Chapter  Google Scholar 

  3. Aquino A, Ignacio B, María-Paz D, Borja M, Javier T. vitisBerry: an Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput Electron Agric. 2018;148:19–28. https://doi.org/10.1016/j.compag.2018.02.021.

    Article  Google Scholar 

  4. Aquino A, Millan B, Gaston D, Diago MP, Tardaguila J. vitisFlower®: development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques. Sensors. 2015;15(9):21204–18. https://doi.org/10.3390/s150921204.

    Article  Google Scholar 

  5. Aravind KR, Raja P, Pérez-Ruiz M. Task-based agricultural mobile robots in arable farming: a review. Span J Agric Res. 2017;15(1):1–16. https://doi.org/10.5424/sjar/2017151-9573.

    Article  Google Scholar 

  6. Ayaz M, Ammad-Uddin M, Sharif Z, Mansour A, Aggoune EHM. Internet-of-Things (IoT)-based smart agriculture: toward making the fields talk. IEEE Access. 2019;7:129551–83. https://doi.org/10.1109/access.2019.2932609.

    Article  Google Scholar 

  7. Bacco M, Barsocchi P, Ferro E, Gotta A, Ruggeri M. The digitisation of agriculture: a survey of research activities on smart farming. Array. 2019;3–4:1–11. https://doi.org/10.1016/j.array.2019.100009.

    Article  Google Scholar 

  8. Barh A. Balakrishnan M Smart phone applications: Role in agri- information dissemination. Agric Rev. 2018;. https://doi.org/10.18805/ag.R-1730.

    Article  Google Scholar 

  9. Bartlett A, Andales A, Arabi M, Bauder T. A smartphone app to extend use of a cloud-based irrigation scheduling tool. Comput Electron Agric. 2015;111:127–30. https://doi.org/10.1016/j.compag.2014.12.021.

    Article  Google Scholar 

  10. Basso B, Antle J. Digital agriculture to design sustainable agricultural systems. Nat Sustain. 2020;3:254–6. https://doi.org/10.1038/s41893-020-0510-0.

    Article  Google Scholar 

  11. Bauer J, Siegmann B, Jarmer T, Aschenbruck N Smart fLAIr: A smartphone application for fast LAI retrieval using Ambient Light Sensors. In: 2016 IEEE sensors applications symposium (SAS), pp 1–6 (2016). https://doi.org/10.1109/SAS.2016.7479880.

  12. Bazzi CL, Jasse EP, Magalhaes PSG, Michelon GK, de Souza EG, Schenatto K, Sobjak R. AgDataBox API—integration of data and software in precision agriculture. SoftwareX. 2019;10:1–8. https://doi.org/10.1016/j.softx.2019.100327.

    Article  Google Scholar 

  13. Bhagat M, Kumar. Role of Internet of Things in smart farming: a brief survey. In: 2019 devices for integrated circuit, DevIC, pp 141–145. IEEE (2019). https://doi.org/10.1109/DEVIC.2019.8783800.

  14. Bonke V, Fecke W, Michels M, Musshoff O. Willingness to pay for smartphone apps facilitating sustainable crop protection. Agron Sustain Dev. 2018;38:5. https://doi.org/10.1007/s13593-018-0532-4.

    Article  Google Scholar 

  15. Bueno-Delgado MV, Molina-Martínez JM, Correoso-Campillo R, Pavón-Marino P. Ecofert: an Android application for the optimization of fertilizer cost in fertigation. Comput Electron Agric. 2016;121:32–42. https://doi.org/10.1016/j.compag.2015.11.006.

    Article  Google Scholar 

  16. Caria M, Schudrowitz J, Jukan A, Kemper N. Smart farm computing systems for animal welfare monitoring. In: 2017 40th international convention on information and communication technology, electronics and microelectronics, MIPRO, pp. 152–157. IEEE (2017). https://doi.org/10.23919/MIPRO.2017.7973408.

  17. Carmona MA, Sautua FJ, Pérez-Hernández O, Mandolesi JI. AgroDecisor EFC: first Android\(^{TM}\) app decision support tool for timing fungicide applications for management of late-season soybean diseases. Comput Electron Agric. 2018;144:310–3. https://doi.org/10.1016/j.compag.2017.11.028.

    Article  Google Scholar 

  18. Carpio F, Jukan A, Sanchez A.I.M, Amla N, Kemper N. Beyond production indicators: a novel smart farming application and system for animal welfare. In: Proceedings of the fourth international conference on animal–computer interaction, ACI2017, pp. 7:1–7:11. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3152130.3152140.

  19. Castro PJM, Caliwag JA, Pagaduan RA, Arpia JM, Delmita GI A mobile application for organic farming assistance techniques using time-series algorithm. In: Proceedings of the 2019 2nd international conference on information science and systems, ICISS 2019, pp. 120–124. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3322645.3322697.

  20. Ceballos F, Kramer B, Robles M. The feasibility of picture-based insurance (PBI): smartphone pictures for affordable crop insurance. Dev Eng. 2019;4:100042. https://doi.org/10.1016/j.deveng.2019.100042.

    Article  Google Scholar 

  21. Chaganti SY, Ainapur P, Singh M, Sangamesh R. S.O prediction based smart farming. in: 2019 2nd international conference of computer and informatics engineering (IC2IE), pp. 204–209 (2019). https://doi.org/10.1109/IC2IE47452.2019.8940834.

  22. Confalonieri R, Foi M, Casa R, Aquaro S, Tona E, Peterle M, Boldini A, Carli GD, Ferrari A, Finotto G, Guarneri T, Manzoni V, Movedi E, Nisoli A, Paleari L, Radici I, Suardi M, Veronesi D, Bregaglio S, Cappelli G, Chiodini ME, Dominoni P, Francone C. Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Comput Electron Agric. 2013;96:67–74. https://doi.org/10.1016/j.compag.2013.04.019.

    Article  Google Scholar 

  23. De Bei R, Fuentes S, Gilliham M, Tyerman S, Edwards E, Bianchini N, Smith J, Collins C. VitiCanopy: a free computer app to estimate canopy vigor and porosity for grapevine. Sensors. 2016;16:4. https://doi.org/10.3390/s16040585.

    Article  Google Scholar 

  24. Delgado JA, Kowalski K, Tebbe C. The first Nitrogen Index app for mobile devices: using portable technology for smart agricultural management. Comput Electron Agric. 2013;91:121–3. https://doi.org/10.1016/j.compag.2012.12.008.

    Article  Google Scholar 

  25. Eitzinger A, Cock J, Atzmanstorfer K, Binder CR, Läderach P, Bonilla-Findji O, Bartling M, Mwongera C, Zurita L, Jarvis A. GeoFarmer: a monitoring and feedback system for agricultural development projects. Comput Electron Agric. 2019;158:109–21. https://doi.org/10.1016/j.compag.2019.01.049.

    Article  Google Scholar 

  26. Ferguson JC, Chechetto RG, O’Donnell CC, Fritz BK, Hoffmann WC, Coleman CE, Chauhan BS, Adkins SW, Kruger GR, Hewitt AJ. Assessing a novel smartphone application—SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors. Comput Electron Agric. 2016;128(C):193–8. https://doi.org/10.1016/j.compag.2016.08.022.

    Article  Google Scholar 

  27. Freebairn D, Ghahramani A, Robinson J, McClymont D. A tool for monitoring soil water using modelling, on-farm data, and mobile technology. Environ Modell Softw. 2018;104:55–63. https://doi.org/10.1016/j.envsoft.2018.03.010.

    Article  Google Scholar 

  28. Frommberger L, Schmid F, Cai C (2013) Micro-mapping with smartphones for monitoring agricultural development. In: Proceedings of the 3rd ACM symposium on computing for development, ACM DEV’13, pp. 1–2. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2442882.2442934.

  29. Fuentes S, Bei RD, Pozo C, Tyerman S. Development of a smartphone application to characterise temporal and spatial canopy architecture and leaf area index for grapevines. Wine Viticult J. 2012;27(6):56–60.

    Google Scholar 

  30. Fuentes S, Poblete-Echeverría C, Ortega-Farias S, Tyerman S, De Bei R. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Aust J Grape Wine Res. 2014;20(3):465–73. https://doi.org/10.1111/ajgw.12098.

    Article  Google Scholar 

  31. Guangyong L, Xiaoyan L, Cuihong J, Guohua L. Analysis on impact of facility agriculture on ecological function of modern agriculture. Proced Environ Sci. 2011;10:300–6. https://doi.org/10.1016/j.proenv.2011.09.049.

    Article  Google Scholar 

  32. Hernández Hernández JL, Ruiz-Hernández J, García-Mateos G, Esquiva JM, Ruiz-Canales A, Martínez J. A new portable application for automatic segmentation of plants in agriculture. Agric Water Manag. 2016;. https://doi.org/10.1016/j.agwat.2016.08.013.

    Article  Google Scholar 

  33. Herrick JE, Beh A, Barrios E, Bouvier I, Coetzee M, Dent D, Elias E, Hengl T, Karl JW, Liniger H, Matuszak J, Neff JC, Ndungu LW, Obersteiner M, Shepherd KD, Urama KC, Bosch R, Webb NP. The land-potential knowledge system (LandPKS): mobile apps and collaboration for optimizing climate change investments. Ecosyst Health Sustain. 2016;2(3):e01209. https://doi.org/10.1002/ehs2.1209.

    Article  Google Scholar 

  34. IÅik MF, Sönmez Y, Yilmaz C, Özdemir V, Yilmaz EN. Precision irrigation system (PIS) using sensor network technology integrated with IOS/Android Application. Appl Sci (Switzerland). 2017;7(891):1–14. https://doi.org/10.3390/app7090891.

    Article  Google Scholar 

  35. Inwood SEE, Dale VH. State of apps targeting management for sustainability of agricultural landscapes. A review. Agron Sustain Dev. 2019;39:8. https://doi.org/10.1007/s13593-018-0549-8.

    Article  Google Scholar 

  36. Jayaraman PP, Yavari A, Georgakopoulos D, Morshed A, Zaslavsky A. Internet of things platform for smart farming: experiences and lessons learnt. Sensors (Switzerland). 2016;16(11):1–17. https://doi.org/10.3390/s16111884.

    Article  Google Scholar 

  37. Jordan R, Eudoxie G, Maharaj K, Belfon R, Bernard M. AgriMaps: improving site-specific land management through mobile maps. Comput Electron Agric. 2016;123:292–6. https://doi.org/10.1016/j.compag.2016.02.009.

    Article  Google Scholar 

  38. Kamilaris A, Gao F, Prenafeta-Boldu FX, Ali MI. Agri-IoT: a semantic framework for Internet of Things-enabled smart farming applications. In: 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, pp. 442–447 (2017). https://doi.org/10.1109/WF-IoT.2016.7845467.

  39. Kapetanovic Z, Vasisht D, Won J, Chandra R, Kimball M. Deploying an always-on farm network. GetMobile Mobile Comput Commun. 2017;21(2):16–21. https://doi.org/10.1145/3131214.3131220.

    Article  Google Scholar 

  40. Kumar SA, Karthikeyan C. Status of mobile agricultural apps in the global mobile ecosystem. Int J Educ Dev Inf Communi Technol. 2019;15(3):63–74.

    Google Scholar 

  41. Lantzos T, Koykoyris G, Salampasis M. FarmManager: an android application for the management of small farms. Proced Technol. 2013;8:587–92. https://doi.org/10.1016/j.protcy.2013.11.084.

    Article  Google Scholar 

  42. Liu B, Koc AB. SafeDriving: a mobile application for tractor rollover detection and emergency reporting. Comput Electron Agric. 2013;98:117–20. https://doi.org/10.1016/j.compag.2013.08.002.

    Article  Google Scholar 

  43. Lomotey RK, Chai Y, Ahmed KA, Deters R. Web services mobile application for geographically dispersed crop farmers. In: 2013 IEEE 16th international conference on computational science and engineering, pp. 151–158. IEEE (2013). https://doi.org/10.1109/CSE.2013.33.

  44. Lomotey RK, Chai Y, Jamal S, Deters R. MobiCrop: supporting crop farmers with a cloud-enabled mobile app. In: 2013 IEEE 6th international conference on service-oriented computing and applications, pp. 182–189. IEEE (2013). https://doi.org/10.1109/SOCA.2013.19.

  45. Louw C, Nieuwenhuizen C. Digitalisation strategies in a South African banking context: a consumer services analysis. South Afr J Inf Manag. 2020;22:1–8. https://doi.org/10.4102/sajim.v22i1.1153.

    Article  Google Scholar 

  46. Machado BB, Orue JPM, Arruda MS, Santos CV, Sarath DS, Goncalves WN, Silva GG, Pistori H, Roel AR, Rodrigues-Jr JF. BioLeaf: a professional mobile application to measure foliar damage caused by insect herbivory. Comput Electron Agric. 2016;129:44–55. https://doi.org/10.1016/j.compag.2016.09.007.

    Article  Google Scholar 

  47. Machado BB, Spadon G, Arruda MS, Goncalves WN, Carvalho AC, Rodrigues-Jr JF. A smartphone application to measure the quality of pest control spraying machines via image analysis. In: Proceedings of the 33rd annual ACM symposium on applied computing. ACM (2018). https://doi.org/10.1145/3167132.3167237.

  48. Madushanki AAR, Halgamuge MN, Wirasagoda WAS, Syed A. Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: a review. Int J Adv Comput Sci Appl. 2019;10(4):11–28 10.14569/ijacsa.2019.0100402.

    Google Scholar 

  49. Maldonado W, Valeriano TTB, de Souza Rolim G. EVAPO: a smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Comput Electron Agric. 2019;156:187–92. https://doi.org/10.1016/j.compag.2018.10.032.

    Article  Google Scholar 

  50. Mesas-Carrascosa FJ, Castillejo-González IL, de la Orden MS, García-Ferrer A. Real-time mobile phone application to support land policy. Comput Electron Agric. 2012;85:109–11. https://doi.org/10.1016/j.compag.2012.04.003.

    Article  Google Scholar 

  51. Michels M, Bonke V, Musshoff O. Understanding the adoption of smartphone apps in dairy herd management. J Dairy Sci. 2019;102(10):9422–34. https://doi.org/10.3168/jds.2019-16489.

    Article  Google Scholar 

  52. Michels M, Bonke V, Musshoff O. Understanding the adoption of smartphone apps in crop protection. Precis Agric. 2020;21(6):1209–26. https://doi.org/10.1007/s11119-020-09715-5.

    Article  Google Scholar 

  53. Minet J, Curnel Y, Gobin A, Goffart JP, Mélard F, Tychon B, Wellens J, Defourny P. Crowdsourcing for agricultural applications: a review of uses and opportunities for a farmsourcing approach. Comput Electron Agric. 2017;142:126–38. https://doi.org/10.1016/j.compag.2017.08.026.

    Article  Google Scholar 

  54. Minh QT, Phan TN, Takahashi A, Thanh TT, Duy SN, Thanh MN, Hong CN. A cost-effective smart farming system with knowledge base. In: Proceedings of the eighth international symposium on information and communication technology, SoICT 2017, pp. 309–316. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3155133.3155151.

  55. Mittal A, Sarangi S, Ramanath S, Bhatt P.V, Sharma R, Srinivasu P. IoT-based precision monitoring of horticultural crops—a case study on cabbage and capsicum. In: Proceedings of GHTC 2018-IEEE global humanitarian technology conference, pp. 1–7. IEEE (2018). https://doi.org/10.1109/GHTC.2018.8601908.

  56. Molina-Martínez JM, Jiménez M, Ruiz-Canales A, Fernández-Pacheco DG. RaGPS: a software application for determining extraterrestrial radiation in mobile devices with GPS. Comput Electron Agric. 2011;78(1):116–21. https://doi.org/10.1016/j.compag.2011.06.009.

    Article  Google Scholar 

  57. Murakami Y, Utomo S.K.T, Hosono K, Umezawa T, Osawa N. iFarm: development of cloud-based system of cultivation management for precision agriculture. In: 2013 IEEE 2nd global conference on consumer electronics, GCCE 2013, pp. 233–234. IEEE (2013). https://doi.org/10.1109/GCCE.2013.6664809.

  58. Myrtille D, Laurens K, Jorrit R, Rudy R, Cees L. Unravelling inclusive business models for achieving food and nutrition security in BOP markets. Glob Food Secur. 2020;24:1–15. https://doi.org/10.1016/j.gfs.2020.100354.

    Article  Google Scholar 

  59. Nelson F, Pickett T, Smith W, Ott L. The GreenStar precision farming system. In: Proceedings of position, location and navigation symposium—PLANS’96, pp. 6–9 (1996). https://doi.org/10.1109/PLANS.1996.509048.

  60. O’Grady M, Langton D, O’Hare G. Edge computing: a tractable model for smart agriculture? Artif Intell Agric. 2019;3:42–51. https://doi.org/10.1016/j.aiia.2019.12.001.

    Article  Google Scholar 

  61. Orlando F, Movedi E, Coduto D, Parisi S, Brancadoro L, Pagani V, Guarneri T. Estimating leaf area index (LAI) in vineyards using the PocketLAI smart-app. Sensors. 2016;16:12. https://doi.org/10.3390/s16122004.

    Article  Google Scholar 

  62. Palomino W, Morales G, Huamán S, Telles J PETEFA: geographic information system for precision agriculture. In: 2018 IEEE XXV international conference on electronics, electrical engineering and computing (INTERCON), pp. 1–4 (2018). https://doi.org/10.1109/INTERCON.2018.8526414.

  63. Patel H, Patel D. Survey of Android apps for agriculture sector. Int J Inf Sci Tech. 2016;6:61–7. https://doi.org/10.5121/ijist.2016.6207.

    Article  Google Scholar 

  64. Patrignani A, Ochsner TE. Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron J. 2015;107(6):2312–20. https://doi.org/10.2134/agronj15.0150.

    Article  Google Scholar 

  65. Pérez-Castro A, Sánchez-Molina JA, Castilla M, Sánchez-Moreno J, Moreno-ÚÂbeda JC, Magán JJ. cFertigUAL: a fertigation management app for greenhouse vegetable crops. Agric Water Manag. 2017;183:186–93. https://doi.org/10.1016/j.agwat.2016.09.013.

    Article  Google Scholar 

  66. Perez-Mena A, Fernández-Zepeda J, Rivera Caicedo J, Avila-George H. PulAm: an app for monitoring crops: proceedings of the 7th international conference on software process improvement (CIMPS 2018), pp. 196–205 (2019). https://doi.org/10.1007/978-3-030-01171-0_18.

  67. Petrellis N. A smart phone image processing application for plant disease diagnosis. In: 2017 6th international conference on modern circuits and systems technologies (MOCAST), pp. 1–4 (2017). https://doi.org/10.1109/MOCAST.2017.7937683.

  68. Petrellis N. Plant disease diagnosis for smart phone applications with extensible set of diseases. Appl Sci. 2019;. https://doi.org/10.3390/app9091952.

    Article  Google Scholar 

  69. Petrie PR, Wang Y, Liu S, Lam S, Whitty MA, Skewes MA. The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status. Biosyst Eng. 2019;179:126–39. https://doi.org/10.1016/j.biosystemseng.2019.01.002.

    Article  Google Scholar 

  70. Pivoto D, Waquil PD, Talamini E, Finocchio CPS, Dalla Corte VF, de Vargas Mores G. Scientific development of smart farming technologies and their application in Brazil. Inf Process Agric. 2018;5(1):21–32. https://doi.org/10.1016/j.inpa.2017.12.002.

    Article  Google Scholar 

  71. Pongnumkul S, Chaovalit P, Surasvadi N. Applications of smartphone-based sensors in agriculture: a systematic review of research. J Sens. 2015;. https://doi.org/10.1155/2015/195308.

    Article  Google Scholar 

  72. Prakash S. From food security to food and nutrition security: role of agriculture and farming systems for nutrition. Curr Sci. 2015;109(3):456–61.

    Google Scholar 

  73. Rafoss T, Sælid K, Sletten A, Gyland LF, Engravslia L. Open geospatial technology standards and their potential in plant pest risk management-GPS-enabled mobile phones utilising open geospatial technology standards Web Feature Service Transactions support the fighting of fire blight in Norway. Comput Electron Agric. 2010;74(2):336–40. https://doi.org/10.1016/j.compag.2010.08.006.

    Article  Google Scholar 

  74. Ryu M, Yun J, Miao T, Ahn IY, Choi SC, Kim J. Design and implementation of a connected farm for smart farming system. 2015 IEEE sensors, pp. 1–4 (2015). https://doi.org/10.1109/ICSENS.2015.7370624.

  75. Serikul P, Nakpong N, Nakjuatong N. Smart farm monitoring via the Blynk IoT platform: case study: humidity monitoring and data recording. In: 2018 sixteenth international conference on ICT and knowledge engineering, pp. 70–75. IEEE, Bangkok, Thailand (2018). https://doi.org/10.1109/ICTKE.2018.8612441.

  76. Sopegno A, Calvo A, Berruto R, Busato P, Bocthis D. A web mobile application for agricultural machinery cost analysis. Comput Electron Agric. 2016;130:158–68. https://doi.org/10.1016/j.compag.2016.08.017.

    Article  Google Scholar 

  77. Suen RCL, Chang KTT, Wan MPH, Ng YC, Tan BCY. Interactive experiences designed for agricultural communities. In: CHI’14 extended abstracts on human factors in computing systems, CHI EA’14, pp. 551–554. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2559206.2574819.

  78. Tanenbaum AS, Van Steen M. Distributed systems. New York: Pearson Education; 2013.

    MATH  Google Scholar 

  79. Vellidis G, Liakos V, Andreis JH, Perry CD, Porter W, Barnes EM, Morgan KT, Fraisse C, Migliaccio KW. Development and assessment of a smartphone application for irrigation scheduling in cotton. Comput Electron Agric. 2016;127:249–59. https://doi.org/10.1016/j.compag.2016.06.021.

    Article  Google Scholar 

  80. Wang Z, Koirala A, Walsh K, Anderson N, Verma B. In field fruit sizing using a smart phone application. Sensors. 2018;18:10. https://doi.org/10.3390/s18103331.

    Article  Google Scholar 

  81. Wanjohi LM, Moturi CA. Smartphones supporting monitoring functions: experiences from sweet potato vine distribution in sub-Saharan Africa, pp. 14–24 (2018).

  82. Wiangtong T, Sirisuk P IoT-based versatile platform for precision farming. In: 2018 18th international symposium on communications and information technologies, pp. 438–441. IEEE (2018). https://doi.org/10.1109/ISCIT.2018.8587989.

  83. Wolfert S, Ge L, Verdouw C, Bogaardt MJ. Big data in smart farming—a review. Agric Syst. 2017;153:69–80. https://doi.org/10.1016/j.agsy.2017.01.023.

    Article  Google Scholar 

  84. Yang X, Shu L, Chen J, Ferrag MA, Wu J, Nurellari E, Huang K. A survey on smart agriculture: development modes, technologies, and security and privacy challenges. IEEE/CAA J Autom Sin. 2021;8(2):273–302. https://doi.org/10.1109/JAS.2020.1003536.

    Article  Google Scholar 

  85. Ye J, Chen B, Liu Q, Fang Y. A precision agriculture management system based on Internet of Things and WebGIS. In: International conference on geoinformatics, pp. 1–5. IEEE (2013). https://doi.org/10.1109/Geoinformatics.2013.6626173.

  86. Yu Q, Shi Y, Tang H, Yang P, Xie A, Liu B, Wu W. eFarm: a tool for better observing agricultural land systems. Sensors. 2017;17:3. https://doi.org/10.3390/s17030453.

    Article  Google Scholar 

  87. Yuttana I, Sarun S. BaiKhao (rice leaf) app: a mobile device-based application in analyzing the color level of the rice leaf for nitrogen estimation. In: Shimura T, Xu G, Tao L, Zheng J (eds) Optoelectronic imaging and multimedia technology II, vol 8558, pp. 96–102. International Society for Optics and Photonics, SPIE (2012). https://doi.org/10.1117/12.2001120.

  88. Zhai Z, Martínez JF, Beltran V, Martínez NL. Decision support systems for agriculture 4.0: survey and challenges. Comput Electron Agric. 2020;170:105256. https://doi.org/10.1016/j.compag.2020.105256.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Legumes Centre for Food and Nutrition Security (LCEFoNS) programme which is funded by VLIR-UOS. The programme is a North–South Collaboration between the Katholieke Universiteit Leuven, Vrije Universiteit Brussel (both in Belgium) and Jomo Kenyatta University of Agriculture and Technology (Kenya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Nyabisa Oteyo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oteyo, I.N., Marra, M., Kimani, S. et al. A Survey on Mobile Applications for Smart Agriculture. SN COMPUT. SCI. 2, 293 (2021). https://doi.org/10.1007/s42979-021-00700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00700-x

Keywords

  • Mobile applications
  • Cloud computing
  • Smart farming
  • Internet of things
  • Smart agriculture applications